santit96's picture
Create the streamlit app that classifies the trash in an image into classes
fa84113
raw
history blame
23.9 kB
""" PyTorch EfficientDet model
Based on official Tensorflow version at: https://github.com/google/automl/tree/master/efficientdet
Paper: https://arxiv.org/abs/1911.09070
Hacked together by Ross Wightman
"""
import torch
import torch.nn as nn
import logging
import math
from collections import OrderedDict
from typing import List, Callable
from functools import partial
from timm import create_model
from timm.models.layers import create_conv2d, drop_path, create_pool2d, Swish, get_act_layer
from .config import get_fpn_config, set_config_writeable, set_config_readonly
_DEBUG = False
_ACT_LAYER = Swish
class SequentialList(nn.Sequential):
""" This module exists to work around torchscript typing issues list -> list"""
def __init__(self, *args):
super(SequentialList, self).__init__(*args)
def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]:
for module in self:
x = module(x)
return x
class ConvBnAct2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, padding='', bias=False,
norm_layer=nn.BatchNorm2d, act_layer=_ACT_LAYER):
super(ConvBnAct2d, self).__init__()
self.conv = create_conv2d(
in_channels, out_channels, kernel_size, stride=stride, dilation=dilation, padding=padding, bias=bias)
self.bn = None if norm_layer is None else norm_layer(out_channels)
self.act = None if act_layer is None else act_layer(inplace=True)
def forward(self, x):
x = self.conv(x)
if self.bn is not None:
x = self.bn(x)
if self.act is not None:
x = self.act(x)
return x
class SeparableConv2d(nn.Module):
""" Separable Conv
"""
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, padding='', bias=False,
channel_multiplier=1.0, pw_kernel_size=1, norm_layer=nn.BatchNorm2d, act_layer=_ACT_LAYER):
super(SeparableConv2d, self).__init__()
self.conv_dw = create_conv2d(
in_channels, int(in_channels * channel_multiplier), kernel_size,
stride=stride, dilation=dilation, padding=padding, depthwise=True)
self.conv_pw = create_conv2d(
int(in_channels * channel_multiplier), out_channels, pw_kernel_size, padding=padding, bias=bias)
self.bn = None if norm_layer is None else norm_layer(out_channels)
self.act = None if act_layer is None else act_layer(inplace=True)
def forward(self, x):
x = self.conv_dw(x)
x = self.conv_pw(x)
if self.bn is not None:
x = self.bn(x)
if self.act is not None:
x = self.act(x)
return x
class ResampleFeatureMap(nn.Sequential):
def __init__(self, in_channels, out_channels, reduction_ratio=1., pad_type='', pooling_type='max',
norm_layer=nn.BatchNorm2d, apply_bn=False, conv_after_downsample=False, redundant_bias=False):
super(ResampleFeatureMap, self).__init__()
pooling_type = pooling_type or 'max'
self.in_channels = in_channels
self.out_channels = out_channels
self.reduction_ratio = reduction_ratio
self.conv_after_downsample = conv_after_downsample
conv = None
if in_channels != out_channels:
conv = ConvBnAct2d(
in_channels, out_channels, kernel_size=1, padding=pad_type,
norm_layer=norm_layer if apply_bn else None,
bias=not apply_bn or redundant_bias, act_layer=None)
if reduction_ratio > 1:
stride_size = int(reduction_ratio)
if conv is not None and not self.conv_after_downsample:
self.add_module('conv', conv)
self.add_module(
'downsample',
create_pool2d(
pooling_type, kernel_size=stride_size + 1, stride=stride_size, padding=pad_type))
if conv is not None and self.conv_after_downsample:
self.add_module('conv', conv)
else:
if conv is not None:
self.add_module('conv', conv)
if reduction_ratio < 1:
scale = int(1 // reduction_ratio)
self.add_module('upsample', nn.UpsamplingNearest2d(scale_factor=scale))
# def forward(self, x):
# # here for debugging only
# assert x.shape[1] == self.in_channels
# if self.reduction_ratio > 1:
# if hasattr(self, 'conv') and not self.conv_after_downsample:
# x = self.conv(x)
# x = self.downsample(x)
# if hasattr(self, 'conv') and self.conv_after_downsample:
# x = self.conv(x)
# else:
# if hasattr(self, 'conv'):
# x = self.conv(x)
# if self.reduction_ratio < 1:
# x = self.upsample(x)
# return x
class FpnCombine(nn.Module):
def __init__(self, feature_info, fpn_config, fpn_channels, inputs_offsets, target_reduction, pad_type='',
pooling_type='max', norm_layer=nn.BatchNorm2d, apply_bn_for_resampling=False,
conv_after_downsample=False, redundant_bias=False, weight_method='attn'):
super(FpnCombine, self).__init__()
self.inputs_offsets = inputs_offsets
self.weight_method = weight_method
self.resample = nn.ModuleDict()
for idx, offset in enumerate(inputs_offsets):
in_channels = fpn_channels
if offset < len(feature_info):
in_channels = feature_info[offset]['num_chs']
input_reduction = feature_info[offset]['reduction']
else:
node_idx = offset - len(feature_info)
input_reduction = fpn_config.nodes[node_idx]['reduction']
reduction_ratio = target_reduction / input_reduction
self.resample[str(offset)] = ResampleFeatureMap(
in_channels, fpn_channels, reduction_ratio=reduction_ratio, pad_type=pad_type,
pooling_type=pooling_type, norm_layer=norm_layer, apply_bn=apply_bn_for_resampling,
conv_after_downsample=conv_after_downsample, redundant_bias=redundant_bias)
if weight_method == 'attn' or weight_method == 'fastattn':
self.edge_weights = nn.Parameter(torch.ones(len(inputs_offsets)), requires_grad=True) # WSM
else:
self.edge_weights = None
def forward(self, x: List[torch.Tensor]):
dtype = x[0].dtype
nodes = []
for offset, resample in zip(self.inputs_offsets, self.resample.values()):
input_node = x[offset]
input_node = resample(input_node)
nodes.append(input_node)
if self.weight_method == 'attn':
normalized_weights = torch.softmax(self.edge_weights.to(dtype=dtype), dim=0)
out = torch.stack(nodes, dim=-1) * normalized_weights
elif self.weight_method == 'fastattn':
edge_weights = nn.functional.relu(self.edge_weights.to(dtype=dtype))
weights_sum = torch.sum(edge_weights)
out = torch.stack(
[(nodes[i] * edge_weights[i]) / (weights_sum + 0.0001) for i in range(len(nodes))], dim=-1)
elif self.weight_method == 'sum':
out = torch.stack(nodes, dim=-1)
else:
raise ValueError('unknown weight_method {}'.format(self.weight_method))
out = torch.sum(out, dim=-1)
return out
class Fnode(nn.Module):
""" A simple wrapper used in place of nn.Sequential for torchscript typing
Handles input type List[Tensor] -> output type Tensor
"""
def __init__(self, combine: nn.Module, after_combine: nn.Module):
super(Fnode, self).__init__()
self.combine = combine
self.after_combine = after_combine
def forward(self, x: List[torch.Tensor]) -> torch.Tensor:
return self.after_combine(self.combine(x))
class BiFpnLayer(nn.Module):
def __init__(self, feature_info, fpn_config, fpn_channels, num_levels=5, pad_type='',
pooling_type='max', norm_layer=nn.BatchNorm2d, act_layer=_ACT_LAYER,
apply_bn_for_resampling=False, conv_after_downsample=True, conv_bn_relu_pattern=False,
separable_conv=True, redundant_bias=False):
super(BiFpnLayer, self).__init__()
self.num_levels = num_levels
self.conv_bn_relu_pattern = False
self.feature_info = []
self.fnode = nn.ModuleList()
for i, fnode_cfg in enumerate(fpn_config.nodes):
logging.debug('fnode {} : {}'.format(i, fnode_cfg))
reduction = fnode_cfg['reduction']
combine = FpnCombine(
feature_info, fpn_config, fpn_channels, tuple(fnode_cfg['inputs_offsets']),
target_reduction=reduction, pad_type=pad_type, pooling_type=pooling_type, norm_layer=norm_layer,
apply_bn_for_resampling=apply_bn_for_resampling, conv_after_downsample=conv_after_downsample,
redundant_bias=redundant_bias, weight_method=fnode_cfg['weight_method'])
after_combine = nn.Sequential()
conv_kwargs = dict(
in_channels=fpn_channels, out_channels=fpn_channels, kernel_size=3, padding=pad_type,
bias=False, norm_layer=norm_layer, act_layer=act_layer)
if not conv_bn_relu_pattern:
conv_kwargs['bias'] = redundant_bias
conv_kwargs['act_layer'] = None
after_combine.add_module('act', act_layer(inplace=True))
after_combine.add_module(
'conv', SeparableConv2d(**conv_kwargs) if separable_conv else ConvBnAct2d(**conv_kwargs))
self.fnode.append(Fnode(combine=combine, after_combine=after_combine))
self.feature_info.append(dict(num_chs=fpn_channels, reduction=reduction))
self.feature_info = self.feature_info[-num_levels::]
def forward(self, x: List[torch.Tensor]):
for fn in self.fnode:
x.append(fn(x))
return x[-self.num_levels::]
class BiFpn(nn.Module):
def __init__(self, config, feature_info):
super(BiFpn, self).__init__()
self.num_levels = config.num_levels
norm_layer = config.norm_layer or nn.BatchNorm2d
if config.norm_kwargs:
norm_layer = partial(norm_layer, **config.norm_kwargs)
act_layer = get_act_layer(config.act_type) or _ACT_LAYER
fpn_config = config.fpn_config or get_fpn_config(
config.fpn_name, min_level=config.min_level, max_level=config.max_level)
self.resample = nn.ModuleDict()
for level in range(config.num_levels):
if level < len(feature_info):
in_chs = feature_info[level]['num_chs']
reduction = feature_info[level]['reduction']
else:
# Adds a coarser level by downsampling the last feature map
reduction_ratio = 2
self.resample[str(level)] = ResampleFeatureMap(
in_channels=in_chs,
out_channels=config.fpn_channels,
pad_type=config.pad_type,
pooling_type=config.pooling_type,
norm_layer=norm_layer,
reduction_ratio=reduction_ratio,
apply_bn=config.apply_bn_for_resampling,
conv_after_downsample=config.conv_after_downsample,
redundant_bias=config.redundant_bias,
)
in_chs = config.fpn_channels
reduction = int(reduction * reduction_ratio)
feature_info.append(dict(num_chs=in_chs, reduction=reduction))
self.cell = SequentialList()
for rep in range(config.fpn_cell_repeats):
logging.debug('building cell {}'.format(rep))
fpn_layer = BiFpnLayer(
feature_info=feature_info,
fpn_config=fpn_config,
fpn_channels=config.fpn_channels,
num_levels=config.num_levels,
pad_type=config.pad_type,
pooling_type=config.pooling_type,
norm_layer=norm_layer,
act_layer=act_layer,
separable_conv=config.separable_conv,
apply_bn_for_resampling=config.apply_bn_for_resampling,
conv_after_downsample=config.conv_after_downsample,
conv_bn_relu_pattern=config.conv_bn_relu_pattern,
redundant_bias=config.redundant_bias,
)
self.cell.add_module(str(rep), fpn_layer)
feature_info = fpn_layer.feature_info
def forward(self, x: List[torch.Tensor]):
for resample in self.resample.values():
x.append(resample(x[-1]))
x = self.cell(x)
return x
class HeadNet(nn.Module):
def __init__(self, config, num_outputs):
super(HeadNet, self).__init__()
self.num_levels = config.num_levels
self.bn_level_first = getattr(config, 'head_bn_level_first', False)
norm_layer = config.norm_layer or nn.BatchNorm2d
if config.norm_kwargs:
norm_layer = partial(norm_layer, **config.norm_kwargs)
act_layer = get_act_layer(config.act_type) or _ACT_LAYER
# Build convolution repeats
conv_fn = SeparableConv2d if config.separable_conv else ConvBnAct2d
conv_kwargs = dict(
in_channels=config.fpn_channels, out_channels=config.fpn_channels, kernel_size=3,
padding=config.pad_type, bias=config.redundant_bias, act_layer=None, norm_layer=None)
self.conv_rep = nn.ModuleList([conv_fn(**conv_kwargs) for _ in range(config.box_class_repeats)])
# Build batchnorm repeats. There is a unique batchnorm per feature level for each repeat.
# This can be organized with repeats first or feature levels first in module lists, the original models
# and weights were setup with repeats first, levels first is required for efficient torchscript usage.
self.bn_rep = nn.ModuleList()
if self.bn_level_first:
for _ in range(self.num_levels):
self.bn_rep.append(nn.ModuleList([
norm_layer(config.fpn_channels) for _ in range(config.box_class_repeats)]))
else:
for _ in range(config.box_class_repeats):
self.bn_rep.append(nn.ModuleList([
nn.Sequential(OrderedDict([('bn', norm_layer(config.fpn_channels))]))
for _ in range(self.num_levels)]))
self.act = act_layer(inplace=True)
# Prediction (output) layer. Has bias with special init reqs, see init fn.
num_anchors = len(config.aspect_ratios) * config.num_scales
predict_kwargs = dict(
in_channels=config.fpn_channels, out_channels=num_outputs * num_anchors, kernel_size=3,
padding=config.pad_type, bias=True, norm_layer=None, act_layer=None)
self.predict = conv_fn(**predict_kwargs)
@torch.jit.ignore()
def toggle_bn_level_first(self):
""" Toggle the batchnorm layers between feature level first vs repeat first access pattern
Limitations in torchscript require feature levels to be iterated over first.
This function can be used to allow loading weights in the original order, and then toggle before
jit scripting the model.
"""
with torch.no_grad():
new_bn_rep = nn.ModuleList()
for i in range(len(self.bn_rep[0])):
bn_first = nn.ModuleList()
for r in self.bn_rep.children():
m = r[i]
# NOTE original rep first model def has extra Sequential container with 'bn', this was
# flattened in the level first definition.
bn_first.append(m[0] if isinstance(m, nn.Sequential) else nn.Sequential(OrderedDict([('bn', m)])))
new_bn_rep.append(bn_first)
self.bn_level_first = not self.bn_level_first
self.bn_rep = new_bn_rep
@torch.jit.ignore()
def _forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]:
outputs = []
for level in range(self.num_levels):
x_level = x[level]
for conv, bn in zip(self.conv_rep, self.bn_rep):
x_level = conv(x_level)
x_level = bn[level](x_level) # this is not allowed in torchscript
x_level = self.act(x_level)
outputs.append(self.predict(x_level))
return outputs
def _forward_level_first(self, x: List[torch.Tensor]) -> List[torch.Tensor]:
outputs = []
for level, bn_rep in enumerate(self.bn_rep): # iterating over first bn dim first makes TS happy
x_level = x[level]
for conv, bn in zip(self.conv_rep, bn_rep):
x_level = conv(x_level)
x_level = bn(x_level)
x_level = self.act(x_level)
outputs.append(self.predict(x_level))
return outputs
def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]:
if self.bn_level_first:
return self._forward_level_first(x)
else:
return self._forward(x)
def _init_weight(m, n='', ):
""" Weight initialization as per Tensorflow official implementations.
"""
def _fan_in_out(w, groups=1):
dimensions = w.dim()
if dimensions < 2:
raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions")
num_input_fmaps = w.size(1)
num_output_fmaps = w.size(0)
receptive_field_size = 1
if w.dim() > 2:
receptive_field_size = w[0][0].numel()
fan_in = num_input_fmaps * receptive_field_size
fan_out = num_output_fmaps * receptive_field_size
fan_out //= groups
return fan_in, fan_out
def _glorot_uniform(w, gain=1, groups=1):
fan_in, fan_out = _fan_in_out(w, groups)
gain /= max(1., (fan_in + fan_out) / 2.) # fan avg
limit = math.sqrt(3.0 * gain)
w.data.uniform_(-limit, limit)
def _variance_scaling(w, gain=1, groups=1):
fan_in, fan_out = _fan_in_out(w, groups)
gain /= max(1., fan_in) # fan in
# gain /= max(1., (fan_in + fan_out) / 2.) # fan
# should it be normal or trunc normal? using normal for now since no good trunc in PT
# constant taken from scipy.stats.truncnorm.std(a=-2, b=2, loc=0., scale=1.)
# std = math.sqrt(gain) / .87962566103423978
# w.data.trunc_normal(std=std)
std = math.sqrt(gain)
w.data.normal_(std=std)
if isinstance(m, SeparableConv2d):
if 'box_net' in n or 'class_net' in n:
_variance_scaling(m.conv_dw.weight, groups=m.conv_dw.groups)
_variance_scaling(m.conv_pw.weight)
if m.conv_pw.bias is not None:
if 'class_net.predict' in n:
m.conv_pw.bias.data.fill_(-math.log((1 - 0.01) / 0.01))
else:
m.conv_pw.bias.data.zero_()
else:
_glorot_uniform(m.conv_dw.weight, groups=m.conv_dw.groups)
_glorot_uniform(m.conv_pw.weight)
if m.conv_pw.bias is not None:
m.conv_pw.bias.data.zero_()
elif isinstance(m, ConvBnAct2d):
if 'box_net' in n or 'class_net' in n:
m.conv.weight.data.normal_(std=.01)
if m.conv.bias is not None:
if 'class_net.predict' in n:
m.conv.bias.data.fill_(-math.log((1 - 0.01) / 0.01))
else:
m.conv.bias.data.zero_()
else:
_glorot_uniform(m.conv.weight)
if m.conv.bias is not None:
m.conv.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
# looks like all bn init the same?
m.weight.data.fill_(1.0)
m.bias.data.zero_()
def _init_weight_alt(m, n='', ):
""" Weight initialization alternative, based on EfficientNet bacbkone init w/ class bias addition
NOTE: this will likely be removed after some experimentation
"""
if isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
if 'class_net.predict' in n:
m.bias.data.fill_(-math.log((1 - 0.01) / 0.01))
else:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1.0)
m.bias.data.zero_()
def get_feature_info(backbone):
if isinstance(backbone.feature_info, Callable):
# old accessor for timm versions <= 0.1.30, efficientnet and mobilenetv3 and related nets only
feature_info = [dict(num_chs=f['num_chs'], reduction=f['reduction'])
for i, f in enumerate(backbone.feature_info())]
else:
# new feature info accessor, timm >= 0.2, all models supported
feature_info = backbone.feature_info.get_dicts(keys=['num_chs', 'reduction'])
return feature_info
class EfficientDet(nn.Module):
def __init__(self, config, pretrained_backbone=True, alternate_init=False):
super(EfficientDet, self).__init__()
self.config = config
set_config_readonly(self.config)
self.backbone = create_model(
config.backbone_name, features_only=True, out_indices=(2, 3, 4),
pretrained=pretrained_backbone, **config.backbone_args)
feature_info = get_feature_info(self.backbone)
self.fpn = BiFpn(self.config, feature_info)
self.class_net = HeadNet(self.config, num_outputs=self.config.num_classes)
self.box_net = HeadNet(self.config, num_outputs=4)
for n, m in self.named_modules():
if 'backbone' not in n:
if alternate_init:
_init_weight_alt(m, n)
else:
_init_weight(m, n)
@torch.jit.ignore()
def reset_head(self, num_classes=None, aspect_ratios=None, num_scales=None, alternate_init=False):
reset_class_head = False
reset_box_head = False
set_config_writeable(self.config)
if num_classes is not None:
reset_class_head = True
self.config.num_classes = num_classes
if aspect_ratios is not None:
reset_box_head = True
self.config.aspect_ratios = aspect_ratios
if num_scales is not None:
reset_box_head = True
self.config.num_scales = num_scales
set_config_readonly(self.config)
if reset_class_head:
self.class_net = HeadNet(self.config, num_outputs=self.config.num_classes)
for n, m in self.class_net.named_modules(prefix='class_net'):
if alternate_init:
_init_weight_alt(m, n)
else:
_init_weight(m, n)
if reset_box_head:
self.box_net = HeadNet(self.config, num_outputs=4)
for n, m in self.box_net.named_modules(prefix='box_net'):
if alternate_init:
_init_weight_alt(m, n)
else:
_init_weight(m, n)
@torch.jit.ignore()
def toggle_head_bn_level_first(self):
""" Toggle the head batchnorm layers between being access with feature_level first vs repeat
"""
self.class_net.toggle_bn_level_first()
self.box_net.toggle_bn_level_first()
def forward(self, x):
x = self.backbone(x)
x = self.fpn(x)
x_class = self.class_net(x)
x_box = self.box_net(x)
return x_class, x_box