Spaces:
Sleeping
Sleeping
File size: 23,935 Bytes
fa84113 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
""" PyTorch EfficientDet model
Based on official Tensorflow version at: https://github.com/google/automl/tree/master/efficientdet
Paper: https://arxiv.org/abs/1911.09070
Hacked together by Ross Wightman
"""
import torch
import torch.nn as nn
import logging
import math
from collections import OrderedDict
from typing import List, Callable
from functools import partial
from timm import create_model
from timm.models.layers import create_conv2d, drop_path, create_pool2d, Swish, get_act_layer
from .config import get_fpn_config, set_config_writeable, set_config_readonly
_DEBUG = False
_ACT_LAYER = Swish
class SequentialList(nn.Sequential):
""" This module exists to work around torchscript typing issues list -> list"""
def __init__(self, *args):
super(SequentialList, self).__init__(*args)
def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]:
for module in self:
x = module(x)
return x
class ConvBnAct2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, padding='', bias=False,
norm_layer=nn.BatchNorm2d, act_layer=_ACT_LAYER):
super(ConvBnAct2d, self).__init__()
self.conv = create_conv2d(
in_channels, out_channels, kernel_size, stride=stride, dilation=dilation, padding=padding, bias=bias)
self.bn = None if norm_layer is None else norm_layer(out_channels)
self.act = None if act_layer is None else act_layer(inplace=True)
def forward(self, x):
x = self.conv(x)
if self.bn is not None:
x = self.bn(x)
if self.act is not None:
x = self.act(x)
return x
class SeparableConv2d(nn.Module):
""" Separable Conv
"""
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, padding='', bias=False,
channel_multiplier=1.0, pw_kernel_size=1, norm_layer=nn.BatchNorm2d, act_layer=_ACT_LAYER):
super(SeparableConv2d, self).__init__()
self.conv_dw = create_conv2d(
in_channels, int(in_channels * channel_multiplier), kernel_size,
stride=stride, dilation=dilation, padding=padding, depthwise=True)
self.conv_pw = create_conv2d(
int(in_channels * channel_multiplier), out_channels, pw_kernel_size, padding=padding, bias=bias)
self.bn = None if norm_layer is None else norm_layer(out_channels)
self.act = None if act_layer is None else act_layer(inplace=True)
def forward(self, x):
x = self.conv_dw(x)
x = self.conv_pw(x)
if self.bn is not None:
x = self.bn(x)
if self.act is not None:
x = self.act(x)
return x
class ResampleFeatureMap(nn.Sequential):
def __init__(self, in_channels, out_channels, reduction_ratio=1., pad_type='', pooling_type='max',
norm_layer=nn.BatchNorm2d, apply_bn=False, conv_after_downsample=False, redundant_bias=False):
super(ResampleFeatureMap, self).__init__()
pooling_type = pooling_type or 'max'
self.in_channels = in_channels
self.out_channels = out_channels
self.reduction_ratio = reduction_ratio
self.conv_after_downsample = conv_after_downsample
conv = None
if in_channels != out_channels:
conv = ConvBnAct2d(
in_channels, out_channels, kernel_size=1, padding=pad_type,
norm_layer=norm_layer if apply_bn else None,
bias=not apply_bn or redundant_bias, act_layer=None)
if reduction_ratio > 1:
stride_size = int(reduction_ratio)
if conv is not None and not self.conv_after_downsample:
self.add_module('conv', conv)
self.add_module(
'downsample',
create_pool2d(
pooling_type, kernel_size=stride_size + 1, stride=stride_size, padding=pad_type))
if conv is not None and self.conv_after_downsample:
self.add_module('conv', conv)
else:
if conv is not None:
self.add_module('conv', conv)
if reduction_ratio < 1:
scale = int(1 // reduction_ratio)
self.add_module('upsample', nn.UpsamplingNearest2d(scale_factor=scale))
# def forward(self, x):
# # here for debugging only
# assert x.shape[1] == self.in_channels
# if self.reduction_ratio > 1:
# if hasattr(self, 'conv') and not self.conv_after_downsample:
# x = self.conv(x)
# x = self.downsample(x)
# if hasattr(self, 'conv') and self.conv_after_downsample:
# x = self.conv(x)
# else:
# if hasattr(self, 'conv'):
# x = self.conv(x)
# if self.reduction_ratio < 1:
# x = self.upsample(x)
# return x
class FpnCombine(nn.Module):
def __init__(self, feature_info, fpn_config, fpn_channels, inputs_offsets, target_reduction, pad_type='',
pooling_type='max', norm_layer=nn.BatchNorm2d, apply_bn_for_resampling=False,
conv_after_downsample=False, redundant_bias=False, weight_method='attn'):
super(FpnCombine, self).__init__()
self.inputs_offsets = inputs_offsets
self.weight_method = weight_method
self.resample = nn.ModuleDict()
for idx, offset in enumerate(inputs_offsets):
in_channels = fpn_channels
if offset < len(feature_info):
in_channels = feature_info[offset]['num_chs']
input_reduction = feature_info[offset]['reduction']
else:
node_idx = offset - len(feature_info)
input_reduction = fpn_config.nodes[node_idx]['reduction']
reduction_ratio = target_reduction / input_reduction
self.resample[str(offset)] = ResampleFeatureMap(
in_channels, fpn_channels, reduction_ratio=reduction_ratio, pad_type=pad_type,
pooling_type=pooling_type, norm_layer=norm_layer, apply_bn=apply_bn_for_resampling,
conv_after_downsample=conv_after_downsample, redundant_bias=redundant_bias)
if weight_method == 'attn' or weight_method == 'fastattn':
self.edge_weights = nn.Parameter(torch.ones(len(inputs_offsets)), requires_grad=True) # WSM
else:
self.edge_weights = None
def forward(self, x: List[torch.Tensor]):
dtype = x[0].dtype
nodes = []
for offset, resample in zip(self.inputs_offsets, self.resample.values()):
input_node = x[offset]
input_node = resample(input_node)
nodes.append(input_node)
if self.weight_method == 'attn':
normalized_weights = torch.softmax(self.edge_weights.to(dtype=dtype), dim=0)
out = torch.stack(nodes, dim=-1) * normalized_weights
elif self.weight_method == 'fastattn':
edge_weights = nn.functional.relu(self.edge_weights.to(dtype=dtype))
weights_sum = torch.sum(edge_weights)
out = torch.stack(
[(nodes[i] * edge_weights[i]) / (weights_sum + 0.0001) for i in range(len(nodes))], dim=-1)
elif self.weight_method == 'sum':
out = torch.stack(nodes, dim=-1)
else:
raise ValueError('unknown weight_method {}'.format(self.weight_method))
out = torch.sum(out, dim=-1)
return out
class Fnode(nn.Module):
""" A simple wrapper used in place of nn.Sequential for torchscript typing
Handles input type List[Tensor] -> output type Tensor
"""
def __init__(self, combine: nn.Module, after_combine: nn.Module):
super(Fnode, self).__init__()
self.combine = combine
self.after_combine = after_combine
def forward(self, x: List[torch.Tensor]) -> torch.Tensor:
return self.after_combine(self.combine(x))
class BiFpnLayer(nn.Module):
def __init__(self, feature_info, fpn_config, fpn_channels, num_levels=5, pad_type='',
pooling_type='max', norm_layer=nn.BatchNorm2d, act_layer=_ACT_LAYER,
apply_bn_for_resampling=False, conv_after_downsample=True, conv_bn_relu_pattern=False,
separable_conv=True, redundant_bias=False):
super(BiFpnLayer, self).__init__()
self.num_levels = num_levels
self.conv_bn_relu_pattern = False
self.feature_info = []
self.fnode = nn.ModuleList()
for i, fnode_cfg in enumerate(fpn_config.nodes):
logging.debug('fnode {} : {}'.format(i, fnode_cfg))
reduction = fnode_cfg['reduction']
combine = FpnCombine(
feature_info, fpn_config, fpn_channels, tuple(fnode_cfg['inputs_offsets']),
target_reduction=reduction, pad_type=pad_type, pooling_type=pooling_type, norm_layer=norm_layer,
apply_bn_for_resampling=apply_bn_for_resampling, conv_after_downsample=conv_after_downsample,
redundant_bias=redundant_bias, weight_method=fnode_cfg['weight_method'])
after_combine = nn.Sequential()
conv_kwargs = dict(
in_channels=fpn_channels, out_channels=fpn_channels, kernel_size=3, padding=pad_type,
bias=False, norm_layer=norm_layer, act_layer=act_layer)
if not conv_bn_relu_pattern:
conv_kwargs['bias'] = redundant_bias
conv_kwargs['act_layer'] = None
after_combine.add_module('act', act_layer(inplace=True))
after_combine.add_module(
'conv', SeparableConv2d(**conv_kwargs) if separable_conv else ConvBnAct2d(**conv_kwargs))
self.fnode.append(Fnode(combine=combine, after_combine=after_combine))
self.feature_info.append(dict(num_chs=fpn_channels, reduction=reduction))
self.feature_info = self.feature_info[-num_levels::]
def forward(self, x: List[torch.Tensor]):
for fn in self.fnode:
x.append(fn(x))
return x[-self.num_levels::]
class BiFpn(nn.Module):
def __init__(self, config, feature_info):
super(BiFpn, self).__init__()
self.num_levels = config.num_levels
norm_layer = config.norm_layer or nn.BatchNorm2d
if config.norm_kwargs:
norm_layer = partial(norm_layer, **config.norm_kwargs)
act_layer = get_act_layer(config.act_type) or _ACT_LAYER
fpn_config = config.fpn_config or get_fpn_config(
config.fpn_name, min_level=config.min_level, max_level=config.max_level)
self.resample = nn.ModuleDict()
for level in range(config.num_levels):
if level < len(feature_info):
in_chs = feature_info[level]['num_chs']
reduction = feature_info[level]['reduction']
else:
# Adds a coarser level by downsampling the last feature map
reduction_ratio = 2
self.resample[str(level)] = ResampleFeatureMap(
in_channels=in_chs,
out_channels=config.fpn_channels,
pad_type=config.pad_type,
pooling_type=config.pooling_type,
norm_layer=norm_layer,
reduction_ratio=reduction_ratio,
apply_bn=config.apply_bn_for_resampling,
conv_after_downsample=config.conv_after_downsample,
redundant_bias=config.redundant_bias,
)
in_chs = config.fpn_channels
reduction = int(reduction * reduction_ratio)
feature_info.append(dict(num_chs=in_chs, reduction=reduction))
self.cell = SequentialList()
for rep in range(config.fpn_cell_repeats):
logging.debug('building cell {}'.format(rep))
fpn_layer = BiFpnLayer(
feature_info=feature_info,
fpn_config=fpn_config,
fpn_channels=config.fpn_channels,
num_levels=config.num_levels,
pad_type=config.pad_type,
pooling_type=config.pooling_type,
norm_layer=norm_layer,
act_layer=act_layer,
separable_conv=config.separable_conv,
apply_bn_for_resampling=config.apply_bn_for_resampling,
conv_after_downsample=config.conv_after_downsample,
conv_bn_relu_pattern=config.conv_bn_relu_pattern,
redundant_bias=config.redundant_bias,
)
self.cell.add_module(str(rep), fpn_layer)
feature_info = fpn_layer.feature_info
def forward(self, x: List[torch.Tensor]):
for resample in self.resample.values():
x.append(resample(x[-1]))
x = self.cell(x)
return x
class HeadNet(nn.Module):
def __init__(self, config, num_outputs):
super(HeadNet, self).__init__()
self.num_levels = config.num_levels
self.bn_level_first = getattr(config, 'head_bn_level_first', False)
norm_layer = config.norm_layer or nn.BatchNorm2d
if config.norm_kwargs:
norm_layer = partial(norm_layer, **config.norm_kwargs)
act_layer = get_act_layer(config.act_type) or _ACT_LAYER
# Build convolution repeats
conv_fn = SeparableConv2d if config.separable_conv else ConvBnAct2d
conv_kwargs = dict(
in_channels=config.fpn_channels, out_channels=config.fpn_channels, kernel_size=3,
padding=config.pad_type, bias=config.redundant_bias, act_layer=None, norm_layer=None)
self.conv_rep = nn.ModuleList([conv_fn(**conv_kwargs) for _ in range(config.box_class_repeats)])
# Build batchnorm repeats. There is a unique batchnorm per feature level for each repeat.
# This can be organized with repeats first or feature levels first in module lists, the original models
# and weights were setup with repeats first, levels first is required for efficient torchscript usage.
self.bn_rep = nn.ModuleList()
if self.bn_level_first:
for _ in range(self.num_levels):
self.bn_rep.append(nn.ModuleList([
norm_layer(config.fpn_channels) for _ in range(config.box_class_repeats)]))
else:
for _ in range(config.box_class_repeats):
self.bn_rep.append(nn.ModuleList([
nn.Sequential(OrderedDict([('bn', norm_layer(config.fpn_channels))]))
for _ in range(self.num_levels)]))
self.act = act_layer(inplace=True)
# Prediction (output) layer. Has bias with special init reqs, see init fn.
num_anchors = len(config.aspect_ratios) * config.num_scales
predict_kwargs = dict(
in_channels=config.fpn_channels, out_channels=num_outputs * num_anchors, kernel_size=3,
padding=config.pad_type, bias=True, norm_layer=None, act_layer=None)
self.predict = conv_fn(**predict_kwargs)
@torch.jit.ignore()
def toggle_bn_level_first(self):
""" Toggle the batchnorm layers between feature level first vs repeat first access pattern
Limitations in torchscript require feature levels to be iterated over first.
This function can be used to allow loading weights in the original order, and then toggle before
jit scripting the model.
"""
with torch.no_grad():
new_bn_rep = nn.ModuleList()
for i in range(len(self.bn_rep[0])):
bn_first = nn.ModuleList()
for r in self.bn_rep.children():
m = r[i]
# NOTE original rep first model def has extra Sequential container with 'bn', this was
# flattened in the level first definition.
bn_first.append(m[0] if isinstance(m, nn.Sequential) else nn.Sequential(OrderedDict([('bn', m)])))
new_bn_rep.append(bn_first)
self.bn_level_first = not self.bn_level_first
self.bn_rep = new_bn_rep
@torch.jit.ignore()
def _forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]:
outputs = []
for level in range(self.num_levels):
x_level = x[level]
for conv, bn in zip(self.conv_rep, self.bn_rep):
x_level = conv(x_level)
x_level = bn[level](x_level) # this is not allowed in torchscript
x_level = self.act(x_level)
outputs.append(self.predict(x_level))
return outputs
def _forward_level_first(self, x: List[torch.Tensor]) -> List[torch.Tensor]:
outputs = []
for level, bn_rep in enumerate(self.bn_rep): # iterating over first bn dim first makes TS happy
x_level = x[level]
for conv, bn in zip(self.conv_rep, bn_rep):
x_level = conv(x_level)
x_level = bn(x_level)
x_level = self.act(x_level)
outputs.append(self.predict(x_level))
return outputs
def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]:
if self.bn_level_first:
return self._forward_level_first(x)
else:
return self._forward(x)
def _init_weight(m, n='', ):
""" Weight initialization as per Tensorflow official implementations.
"""
def _fan_in_out(w, groups=1):
dimensions = w.dim()
if dimensions < 2:
raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions")
num_input_fmaps = w.size(1)
num_output_fmaps = w.size(0)
receptive_field_size = 1
if w.dim() > 2:
receptive_field_size = w[0][0].numel()
fan_in = num_input_fmaps * receptive_field_size
fan_out = num_output_fmaps * receptive_field_size
fan_out //= groups
return fan_in, fan_out
def _glorot_uniform(w, gain=1, groups=1):
fan_in, fan_out = _fan_in_out(w, groups)
gain /= max(1., (fan_in + fan_out) / 2.) # fan avg
limit = math.sqrt(3.0 * gain)
w.data.uniform_(-limit, limit)
def _variance_scaling(w, gain=1, groups=1):
fan_in, fan_out = _fan_in_out(w, groups)
gain /= max(1., fan_in) # fan in
# gain /= max(1., (fan_in + fan_out) / 2.) # fan
# should it be normal or trunc normal? using normal for now since no good trunc in PT
# constant taken from scipy.stats.truncnorm.std(a=-2, b=2, loc=0., scale=1.)
# std = math.sqrt(gain) / .87962566103423978
# w.data.trunc_normal(std=std)
std = math.sqrt(gain)
w.data.normal_(std=std)
if isinstance(m, SeparableConv2d):
if 'box_net' in n or 'class_net' in n:
_variance_scaling(m.conv_dw.weight, groups=m.conv_dw.groups)
_variance_scaling(m.conv_pw.weight)
if m.conv_pw.bias is not None:
if 'class_net.predict' in n:
m.conv_pw.bias.data.fill_(-math.log((1 - 0.01) / 0.01))
else:
m.conv_pw.bias.data.zero_()
else:
_glorot_uniform(m.conv_dw.weight, groups=m.conv_dw.groups)
_glorot_uniform(m.conv_pw.weight)
if m.conv_pw.bias is not None:
m.conv_pw.bias.data.zero_()
elif isinstance(m, ConvBnAct2d):
if 'box_net' in n or 'class_net' in n:
m.conv.weight.data.normal_(std=.01)
if m.conv.bias is not None:
if 'class_net.predict' in n:
m.conv.bias.data.fill_(-math.log((1 - 0.01) / 0.01))
else:
m.conv.bias.data.zero_()
else:
_glorot_uniform(m.conv.weight)
if m.conv.bias is not None:
m.conv.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
# looks like all bn init the same?
m.weight.data.fill_(1.0)
m.bias.data.zero_()
def _init_weight_alt(m, n='', ):
""" Weight initialization alternative, based on EfficientNet bacbkone init w/ class bias addition
NOTE: this will likely be removed after some experimentation
"""
if isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
if 'class_net.predict' in n:
m.bias.data.fill_(-math.log((1 - 0.01) / 0.01))
else:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1.0)
m.bias.data.zero_()
def get_feature_info(backbone):
if isinstance(backbone.feature_info, Callable):
# old accessor for timm versions <= 0.1.30, efficientnet and mobilenetv3 and related nets only
feature_info = [dict(num_chs=f['num_chs'], reduction=f['reduction'])
for i, f in enumerate(backbone.feature_info())]
else:
# new feature info accessor, timm >= 0.2, all models supported
feature_info = backbone.feature_info.get_dicts(keys=['num_chs', 'reduction'])
return feature_info
class EfficientDet(nn.Module):
def __init__(self, config, pretrained_backbone=True, alternate_init=False):
super(EfficientDet, self).__init__()
self.config = config
set_config_readonly(self.config)
self.backbone = create_model(
config.backbone_name, features_only=True, out_indices=(2, 3, 4),
pretrained=pretrained_backbone, **config.backbone_args)
feature_info = get_feature_info(self.backbone)
self.fpn = BiFpn(self.config, feature_info)
self.class_net = HeadNet(self.config, num_outputs=self.config.num_classes)
self.box_net = HeadNet(self.config, num_outputs=4)
for n, m in self.named_modules():
if 'backbone' not in n:
if alternate_init:
_init_weight_alt(m, n)
else:
_init_weight(m, n)
@torch.jit.ignore()
def reset_head(self, num_classes=None, aspect_ratios=None, num_scales=None, alternate_init=False):
reset_class_head = False
reset_box_head = False
set_config_writeable(self.config)
if num_classes is not None:
reset_class_head = True
self.config.num_classes = num_classes
if aspect_ratios is not None:
reset_box_head = True
self.config.aspect_ratios = aspect_ratios
if num_scales is not None:
reset_box_head = True
self.config.num_scales = num_scales
set_config_readonly(self.config)
if reset_class_head:
self.class_net = HeadNet(self.config, num_outputs=self.config.num_classes)
for n, m in self.class_net.named_modules(prefix='class_net'):
if alternate_init:
_init_weight_alt(m, n)
else:
_init_weight(m, n)
if reset_box_head:
self.box_net = HeadNet(self.config, num_outputs=4)
for n, m in self.box_net.named_modules(prefix='box_net'):
if alternate_init:
_init_weight_alt(m, n)
else:
_init_weight(m, n)
@torch.jit.ignore()
def toggle_head_bn_level_first(self):
""" Toggle the head batchnorm layers between being access with feature_level first vs repeat
"""
self.class_net.toggle_bn_level_first()
self.box_net.toggle_bn_level_first()
def forward(self, x):
x = self.backbone(x)
x = self.fpn(x)
x_class = self.class_net(x)
x_box = self.box_net(x)
return x_class, x_box
|