ronakreddy18 commited on
Commit
9c9058a
·
verified ·
1 Parent(s): 4914bcc

Update pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py

Browse files
pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py CHANGED
@@ -72,7 +72,6 @@ def data_collection_page():
72
  if st.button("Back to Home"):
73
  st.session_state.page = "home"
74
 
75
-
76
  # ----------------- Structured Data Page -----------------
77
  def structured_data_page():
78
  st.title(":blue[Structured Data]")
@@ -132,7 +131,7 @@ excel_file = pd.ExcelFile('data.xlsx')
132
  print(excel_file.sheet_names)
133
  """, language='python')
134
 
135
- st.link_button("Jupyter Notebook", "https://colab.research.google.com/drive/1ZTKWTknL-4IQ9QbAfcyKzIP-_lNxmz2P?usp=sharing")
136
 
137
  if st.button("Back to Structured Data"):
138
  st.session_state.page = "structured_data"
@@ -142,9 +141,11 @@ def csv_page():
142
  st.title(":green[CSV Data Format]")
143
 
144
  st.write("### What is CSV?")
145
- st.write("CSV (Comma-Separated Values) files store tabular data in plain text, where each line is a data record and columns are separated by commas.")
 
 
146
 
147
- st.write("### How to Read CSV Files")
148
  st.code("""
149
  import pandas as pd
150
 
@@ -169,7 +170,14 @@ except UnicodeDecodeError:
169
  print("Error: Encoding issue. Try specifying a different encoding like 'latin1' or 'utf-8'.")
170
  """, language='python')
171
 
172
- st.link_button("Jupyter Notebook", "https://colab.research.google.com/drive/your_csv_guide_link")
 
 
 
 
 
 
 
173
 
174
  if st.button("Back to Structured Data"):
175
  st.session_state.page = "structured_data"
@@ -180,9 +188,10 @@ def json_page():
180
 
181
  st.write("### What is JSON?")
182
  st.write("""
183
- JSON (JavaScript Object Notation) is a lightweight data-interchange format.
184
  """)
185
 
 
186
  st.code("""
187
  import json
188
 
@@ -192,11 +201,32 @@ with open('data.json', 'r') as file:
192
  print(data)
193
  """, language='python')
194
 
195
- st.link_button("Jupyter Notebook", "https://colab.research.google.com/drive/your_json_guide_link")
 
 
196
 
197
- if st.button("Back to Structured Data"):
198
- st.session_state.page = "structured
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
 
 
 
 
 
200
 
201
  # ----------------- Unstructured Data Page -----------------
202
  def unstructured_data_page():
@@ -378,23 +408,24 @@ print(root.find('name').text) # Output: Bob
378
  if st.button("Back to Data Collection"):
379
  st.session_state.page = "data_collection"
380
 
381
- # ----------------- Router -----------------
382
- def router():
383
- if st.session_state.page == "home":
384
- home_page()
385
- elif st.session_state.page == "data_collection":
386
- data_collection_page()
387
- elif st.session_state.page == "structured_data":
388
- structured_data_page()
389
- elif st.session_state.page == "excel":
390
- excel_page()
391
- elif st.session_state.page == "csv":
392
- csv_page()
393
- elif st.session_state.page == "unstructured_data":
394
- unstructured_data_page()
395
- elif st.session_state.page == "semi_structured_data":
396
- semi_structured_data_page()
397
-
 
398
  # Run the router function
399
  if __name__ == "__main__":
400
- router()
 
72
  if st.button("Back to Home"):
73
  st.session_state.page = "home"
74
 
 
75
  # ----------------- Structured Data Page -----------------
76
  def structured_data_page():
77
  st.title(":blue[Structured Data]")
 
131
  print(excel_file.sheet_names)
132
  """, language='python')
133
 
134
+ st.markdown('[Jupyter Notebook](https://colab.research.google.com/drive/1ZTKWTknL-4IQ9QbAfcyKzIP-_lNxmz2P?usp=sharing)')
135
 
136
  if st.button("Back to Structured Data"):
137
  st.session_state.page = "structured_data"
 
141
  st.title(":green[CSV Data Format]")
142
 
143
  st.write("### What is CSV?")
144
+ st.write("""
145
+ CSV (Comma-Separated Values) files store tabular data in plain text, where each line is a data record and columns are separated by commas.
146
+ """)
147
 
148
+ st.write("### Reading CSV Files")
149
  st.code("""
150
  import pandas as pd
151
 
 
170
  print("Error: Encoding issue. Try specifying a different encoding like 'latin1' or 'utf-8'.")
171
  """, language='python')
172
 
173
+ st.markdown("### Tips for Handling CSV Files")
174
+ st.write("""
175
+ - Always verify the delimiter used (e.g., commas, semicolons).
176
+ - Check for encoding compatibility, especially when dealing with international characters.
177
+ - Handle missing data effectively using functions like `fillna()` or `dropna()`.
178
+ """)
179
+
180
+ st.markdown('[Jupyter Notebook](https://colab.research.google.com/drive/your_csv_guide_link)')
181
 
182
  if st.button("Back to Structured Data"):
183
  st.session_state.page = "structured_data"
 
188
 
189
  st.write("### What is JSON?")
190
  st.write("""
191
+ JSON (JavaScript Object Notation) is a lightweight data-interchange format that's easy for humans to read and write, and easy for machines to parse and generate. JSON is often used in APIs, configuration files, and data transfer applications.
192
  """)
193
 
194
+ st.write("### Reading JSON Files")
195
  st.code("""
196
  import json
197
 
 
201
  print(data)
202
  """, language='python')
203
 
204
+ st.write("### Writing JSON Files")
205
+ st.code("""
206
+ import json
207
 
208
+ # Write data to JSON file
209
+ data = {
210
+ "name": "Alice",
211
+ "age": 25,
212
+ "skills": ["Python", "Machine Learning"]
213
+ }
214
+
215
+ with open('data.json', 'w') as file:
216
+ json.dump(data, file, indent=4)
217
+ """, language='python')
218
+
219
+ st.markdown("### Tips for Handling JSON Files")
220
+ st.write("""
221
+ - JSON files can be nested, so you might need to navigate through dictionaries and lists.
222
+ - If the structure is complex, you can use libraries like `json_normalize()` in pandas to flatten the JSON into a more tabular format for easier analysis.
223
+ - JSON supports both strings and numbers, and other types like arrays and booleans, making it versatile for various data types.
224
+ """)
225
 
226
+ st.markdown('[Jupyter Notebook](https://colab.research.google.com/drive/your_json_guide_link)')
227
+
228
+ if st.button("Back to Structured Data"):
229
+ st.session_state.page = "structured_data"
230
 
231
  # ----------------- Unstructured Data Page -----------------
232
  def unstructured_data_page():
 
408
  if st.button("Back to Data Collection"):
409
  st.session_state.page = "data_collection"
410
 
411
+ # Main control to call appropriate page
412
+ if st.session_state.page == "home":
413
+ home_page()
414
+ elif st.session_state.page == "data_collection":
415
+ data_collection_page()
416
+ elif st.session_state.page == "structured_data":
417
+ structured_data_page()
418
+ elif st.session_state.page == "excel":
419
+ excel_page()
420
+ elif st.session_state.page == "csv":
421
+ csv_page()
422
+ elif st.session_state.page == "json":
423
+ json_page()
424
+ elif st.session_state.page == "unstructured_data":
425
+ unstructured_data_page()
426
+ elif st.session_state.page == "semi_structured_data":
427
+ semi_structured_data_page()
428
+
429
  # Run the router function
430
  if __name__ == "__main__":
431
+ router()