Update pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py
Browse files
pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py
CHANGED
@@ -72,7 +72,6 @@ def data_collection_page():
|
|
72 |
if st.button("Back to Home"):
|
73 |
st.session_state.page = "home"
|
74 |
|
75 |
-
|
76 |
# ----------------- Structured Data Page -----------------
|
77 |
def structured_data_page():
|
78 |
st.title(":blue[Structured Data]")
|
@@ -132,7 +131,7 @@ excel_file = pd.ExcelFile('data.xlsx')
|
|
132 |
print(excel_file.sheet_names)
|
133 |
""", language='python')
|
134 |
|
135 |
-
st.
|
136 |
|
137 |
if st.button("Back to Structured Data"):
|
138 |
st.session_state.page = "structured_data"
|
@@ -142,9 +141,11 @@ def csv_page():
|
|
142 |
st.title(":green[CSV Data Format]")
|
143 |
|
144 |
st.write("### What is CSV?")
|
145 |
-
st.write("
|
|
|
|
|
146 |
|
147 |
-
st.write("###
|
148 |
st.code("""
|
149 |
import pandas as pd
|
150 |
|
@@ -169,7 +170,14 @@ except UnicodeDecodeError:
|
|
169 |
print("Error: Encoding issue. Try specifying a different encoding like 'latin1' or 'utf-8'.")
|
170 |
""", language='python')
|
171 |
|
172 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
if st.button("Back to Structured Data"):
|
175 |
st.session_state.page = "structured_data"
|
@@ -180,9 +188,10 @@ def json_page():
|
|
180 |
|
181 |
st.write("### What is JSON?")
|
182 |
st.write("""
|
183 |
-
JSON (JavaScript Object Notation) is a lightweight data-interchange format.
|
184 |
""")
|
185 |
|
|
|
186 |
st.code("""
|
187 |
import json
|
188 |
|
@@ -192,11 +201,32 @@ with open('data.json', 'r') as file:
|
|
192 |
print(data)
|
193 |
""", language='python')
|
194 |
|
195 |
-
st.
|
|
|
|
|
196 |
|
197 |
-
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
|
|
|
|
|
|
|
|
200 |
|
201 |
# ----------------- Unstructured Data Page -----------------
|
202 |
def unstructured_data_page():
|
@@ -378,23 +408,24 @@ print(root.find('name').text) # Output: Bob
|
|
378 |
if st.button("Back to Data Collection"):
|
379 |
st.session_state.page = "data_collection"
|
380 |
|
381 |
-
#
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
|
|
398 |
# Run the router function
|
399 |
if __name__ == "__main__":
|
400 |
-
router()
|
|
|
72 |
if st.button("Back to Home"):
|
73 |
st.session_state.page = "home"
|
74 |
|
|
|
75 |
# ----------------- Structured Data Page -----------------
|
76 |
def structured_data_page():
|
77 |
st.title(":blue[Structured Data]")
|
|
|
131 |
print(excel_file.sheet_names)
|
132 |
""", language='python')
|
133 |
|
134 |
+
st.markdown('[Jupyter Notebook](https://colab.research.google.com/drive/1ZTKWTknL-4IQ9QbAfcyKzIP-_lNxmz2P?usp=sharing)')
|
135 |
|
136 |
if st.button("Back to Structured Data"):
|
137 |
st.session_state.page = "structured_data"
|
|
|
141 |
st.title(":green[CSV Data Format]")
|
142 |
|
143 |
st.write("### What is CSV?")
|
144 |
+
st.write("""
|
145 |
+
CSV (Comma-Separated Values) files store tabular data in plain text, where each line is a data record and columns are separated by commas.
|
146 |
+
""")
|
147 |
|
148 |
+
st.write("### Reading CSV Files")
|
149 |
st.code("""
|
150 |
import pandas as pd
|
151 |
|
|
|
170 |
print("Error: Encoding issue. Try specifying a different encoding like 'latin1' or 'utf-8'.")
|
171 |
""", language='python')
|
172 |
|
173 |
+
st.markdown("### Tips for Handling CSV Files")
|
174 |
+
st.write("""
|
175 |
+
- Always verify the delimiter used (e.g., commas, semicolons).
|
176 |
+
- Check for encoding compatibility, especially when dealing with international characters.
|
177 |
+
- Handle missing data effectively using functions like `fillna()` or `dropna()`.
|
178 |
+
""")
|
179 |
+
|
180 |
+
st.markdown('[Jupyter Notebook](https://colab.research.google.com/drive/your_csv_guide_link)')
|
181 |
|
182 |
if st.button("Back to Structured Data"):
|
183 |
st.session_state.page = "structured_data"
|
|
|
188 |
|
189 |
st.write("### What is JSON?")
|
190 |
st.write("""
|
191 |
+
JSON (JavaScript Object Notation) is a lightweight data-interchange format that's easy for humans to read and write, and easy for machines to parse and generate. JSON is often used in APIs, configuration files, and data transfer applications.
|
192 |
""")
|
193 |
|
194 |
+
st.write("### Reading JSON Files")
|
195 |
st.code("""
|
196 |
import json
|
197 |
|
|
|
201 |
print(data)
|
202 |
""", language='python')
|
203 |
|
204 |
+
st.write("### Writing JSON Files")
|
205 |
+
st.code("""
|
206 |
+
import json
|
207 |
|
208 |
+
# Write data to JSON file
|
209 |
+
data = {
|
210 |
+
"name": "Alice",
|
211 |
+
"age": 25,
|
212 |
+
"skills": ["Python", "Machine Learning"]
|
213 |
+
}
|
214 |
+
|
215 |
+
with open('data.json', 'w') as file:
|
216 |
+
json.dump(data, file, indent=4)
|
217 |
+
""", language='python')
|
218 |
+
|
219 |
+
st.markdown("### Tips for Handling JSON Files")
|
220 |
+
st.write("""
|
221 |
+
- JSON files can be nested, so you might need to navigate through dictionaries and lists.
|
222 |
+
- If the structure is complex, you can use libraries like `json_normalize()` in pandas to flatten the JSON into a more tabular format for easier analysis.
|
223 |
+
- JSON supports both strings and numbers, and other types like arrays and booleans, making it versatile for various data types.
|
224 |
+
""")
|
225 |
|
226 |
+
st.markdown('[Jupyter Notebook](https://colab.research.google.com/drive/your_json_guide_link)')
|
227 |
+
|
228 |
+
if st.button("Back to Structured Data"):
|
229 |
+
st.session_state.page = "structured_data"
|
230 |
|
231 |
# ----------------- Unstructured Data Page -----------------
|
232 |
def unstructured_data_page():
|
|
|
408 |
if st.button("Back to Data Collection"):
|
409 |
st.session_state.page = "data_collection"
|
410 |
|
411 |
+
# Main control to call appropriate page
|
412 |
+
if st.session_state.page == "home":
|
413 |
+
home_page()
|
414 |
+
elif st.session_state.page == "data_collection":
|
415 |
+
data_collection_page()
|
416 |
+
elif st.session_state.page == "structured_data":
|
417 |
+
structured_data_page()
|
418 |
+
elif st.session_state.page == "excel":
|
419 |
+
excel_page()
|
420 |
+
elif st.session_state.page == "csv":
|
421 |
+
csv_page()
|
422 |
+
elif st.session_state.page == "json":
|
423 |
+
json_page()
|
424 |
+
elif st.session_state.page == "unstructured_data":
|
425 |
+
unstructured_data_page()
|
426 |
+
elif st.session_state.page == "semi_structured_data":
|
427 |
+
semi_structured_data_page()
|
428 |
+
|
429 |
# Run the router function
|
430 |
if __name__ == "__main__":
|
431 |
+
router()
|