ronakreddy18 commited on
Commit
5048fcf
·
verified ·
1 Parent(s): b373c73

Update pages/introds.py

Browse files
Files changed (1) hide show
  1. pages/introds.py +65 -33
pages/introds.py CHANGED
@@ -1,52 +1,84 @@
1
  import streamlit as st
2
- import pandas as pd
3
- import numpy as np
4
 
5
- # Add header section
6
- st.markdown(
7
- "<h1 style='text-align: center; color: Black;'>DATA SCIENCE INTRODUCTION</h1>",
8
- unsafe_allow_html=True
9
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
- # Main content with properly formatted HTML
 
 
 
12
  st.markdown(
13
  """
14
- <div class="section">
15
  <h2>What is Data Science?</h2>
16
  <p>
17
- It combines techniques from statistics, computer science, mathematics, and domain expertise to analyze and interpret data effectively.
18
- In essence, data science transforms raw data into actionable insights, driving smarter decisions across industries.
19
- There are several types of applications, as explained below:
20
  </p>
21
  <ul>
22
- <li>Analyzing customer reviews to identify product sentiment</li>
23
- <li>Techniques Used: Natural Language Processing (NLP), sentiment analysis.</li>
24
  <li>Optimizing delivery routes for logistics companies</li>
25
  <li>Techniques Used: Graph algorithms, optimization techniques</li>
26
  </ul>
27
  </div>
28
 
29
- <div class="section">
30
- <h2>Few Important Steps in Data Science</h2>
31
- <p>
32
- Data Science involves several steps, such as:
33
- </p>
34
- <ul>
35
- <li><strong>Understanding the Given Problem:</strong> First, you need to understand the type of problem you are addressing.</li>
36
- <li><strong>Data Collection:</strong> Gather relevant data from various sources to address the defined problem.</li>
37
- <li><strong>Data Cleaning and Preprocessing:</strong> Prepare the raw data for analysis by handling inconsistencies, missing values, and errors.</li>
38
- <li><strong>Exploratory Data Analysis (EDA):</strong> Gain an initial understanding of the data's main characteristics through visualization and summary statistics.</li>
39
- <li><strong>Deployment:</strong> Implement the model into a production environment where it can provide actionable insights or make decisions in real-time.</li>
40
  </ul>
41
  </div>
42
  """,
43
  unsafe_allow_html=True
44
  )
45
-
46
-
47
-
48
-
49
-
50
-
51
-
52
-
 
1
  import streamlit as st
 
 
2
 
3
+ # Custom CSS for styling and background
4
+ custom_css = """
5
+ <style>
6
+ html, body, [data-testid="stAppViewContainer"] {
7
+ background: linear-gradient(
8
+ rgba(0, 0, 0, 0.6),
9
+ rgba(0, 0, 0, 0.6)
10
+ ),
11
+ url("https://cdn.pixabay.com/photo/2024/01/29/22/47/ai-generated-8540915_1280.jpg") no-repeat center center fixed;
12
+ background-size: cover;
13
+ font-family: Arial, sans-serif;
14
+ color: #ffffff;
15
+ }
16
+ h1 {
17
+ color: #ffffff;
18
+ text-align: center;
19
+ font-size: 3rem;
20
+ margin-top: 20px;
21
+ text-shadow: 2px 2px 6px rgba(0, 0, 0, 0.7);
22
+ }
23
+ .division {
24
+ margin: 20px auto;
25
+ padding: 30px;
26
+ background: rgba(255, 255, 255, 0.2);
27
+ border-radius: 15px;
28
+ box-shadow: 0 6px 8px rgba(0, 0, 0, 0.2);
29
+ }
30
+ .division h2 {
31
+ color: #ffffff;
32
+ margin-bottom: 15px;
33
+ font-size: 2.2rem;
34
+ text-shadow: 1px 1px 3px rgba(0, 0, 0, 0.8);
35
+ }
36
+ .division p, .division ul li {
37
+ font-size: 1.2rem;
38
+ line-height: 1.8;
39
+ color: #e0e0e0;
40
+ }
41
+ .division ul li {
42
+ margin-bottom: 10px;
43
+ }
44
+ </style>
45
+ """
46
+
47
+ # Inject the CSS styles
48
+ st.markdown(custom_css, unsafe_allow_html=True)
49
 
50
+ # Header section
51
+ st.markdown("<h1>Welcome to Data Science Introduction</h1>", unsafe_allow_html=True)
52
+
53
+ # Main content
54
  st.markdown(
55
  """
56
+ <div class="division">
57
  <h2>What is Data Science?</h2>
58
  <p>
59
+ Data science combines techniques from statistics, computer science, mathematics, and domain expertise
60
+ to analyze and interpret data effectively. It transforms raw data into actionable insights, driving smarter
61
+ decisions across industries.
62
  </p>
63
  <ul>
64
+ <li>Analyzing customer reviews to identify product sentiment</li>
65
+ <li>Techniques Used: Natural Language Processing (NLP), sentiment analysis</li>
66
  <li>Optimizing delivery routes for logistics companies</li>
67
  <li>Techniques Used: Graph algorithms, optimization techniques</li>
68
  </ul>
69
  </div>
70
 
71
+ <div class="division">
72
+ <h2>Key Steps in Data Science</h2>
73
+ <p>Data Science involves several steps, such as:</p>
74
+ <ul>
75
+ <li><strong>Understanding the Problem:</strong> Grasp the problem's nature and define clear objectives.</li>
76
+ <li><strong>Data Collection:</strong> Gather relevant data from multiple sources.</li>
77
+ <li><strong>Data Cleaning:</strong> Handle inconsistencies, missing values, and prepare data for analysis.</li>
78
+ <li><strong>Exploratory Data Analysis (EDA):</strong> Use visualization and summary statistics to understand data.</li>
79
+ <li><strong>Model Deployment:</strong> Implement models in a production environment for real-time decision-making.</li>
 
 
80
  </ul>
81
  </div>
82
  """,
83
  unsafe_allow_html=True
84
  )