Update pages/introds.py
Browse files- pages/introds.py +65 -33
pages/introds.py
CHANGED
@@ -1,52 +1,84 @@
|
|
1 |
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
#
|
|
|
|
|
|
|
12 |
st.markdown(
|
13 |
"""
|
14 |
-
<div class="
|
15 |
<h2>What is Data Science?</h2>
|
16 |
<p>
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
</p>
|
21 |
<ul>
|
22 |
-
<li>Analyzing customer reviews to identify product sentiment</li>
|
23 |
-
<li>Techniques Used: Natural Language Processing (NLP), sentiment analysis
|
24 |
<li>Optimizing delivery routes for logistics companies</li>
|
25 |
<li>Techniques Used: Graph algorithms, optimization techniques</li>
|
26 |
</ul>
|
27 |
</div>
|
28 |
|
29 |
-
<div class="
|
30 |
-
<h2>
|
31 |
-
<p>
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
<li><strong>Exploratory Data Analysis (EDA):</strong> Gain an initial understanding of the data's main characteristics through visualization and summary statistics.</li>
|
39 |
-
<li><strong>Deployment:</strong> Implement the model into a production environment where it can provide actionable insights or make decisions in real-time.</li>
|
40 |
</ul>
|
41 |
</div>
|
42 |
""",
|
43 |
unsafe_allow_html=True
|
44 |
)
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
|
3 |
+
# Custom CSS for styling and background
|
4 |
+
custom_css = """
|
5 |
+
<style>
|
6 |
+
html, body, [data-testid="stAppViewContainer"] {
|
7 |
+
background: linear-gradient(
|
8 |
+
rgba(0, 0, 0, 0.6),
|
9 |
+
rgba(0, 0, 0, 0.6)
|
10 |
+
),
|
11 |
+
url("https://cdn.pixabay.com/photo/2024/01/29/22/47/ai-generated-8540915_1280.jpg") no-repeat center center fixed;
|
12 |
+
background-size: cover;
|
13 |
+
font-family: Arial, sans-serif;
|
14 |
+
color: #ffffff;
|
15 |
+
}
|
16 |
+
h1 {
|
17 |
+
color: #ffffff;
|
18 |
+
text-align: center;
|
19 |
+
font-size: 3rem;
|
20 |
+
margin-top: 20px;
|
21 |
+
text-shadow: 2px 2px 6px rgba(0, 0, 0, 0.7);
|
22 |
+
}
|
23 |
+
.division {
|
24 |
+
margin: 20px auto;
|
25 |
+
padding: 30px;
|
26 |
+
background: rgba(255, 255, 255, 0.2);
|
27 |
+
border-radius: 15px;
|
28 |
+
box-shadow: 0 6px 8px rgba(0, 0, 0, 0.2);
|
29 |
+
}
|
30 |
+
.division h2 {
|
31 |
+
color: #ffffff;
|
32 |
+
margin-bottom: 15px;
|
33 |
+
font-size: 2.2rem;
|
34 |
+
text-shadow: 1px 1px 3px rgba(0, 0, 0, 0.8);
|
35 |
+
}
|
36 |
+
.division p, .division ul li {
|
37 |
+
font-size: 1.2rem;
|
38 |
+
line-height: 1.8;
|
39 |
+
color: #e0e0e0;
|
40 |
+
}
|
41 |
+
.division ul li {
|
42 |
+
margin-bottom: 10px;
|
43 |
+
}
|
44 |
+
</style>
|
45 |
+
"""
|
46 |
+
|
47 |
+
# Inject the CSS styles
|
48 |
+
st.markdown(custom_css, unsafe_allow_html=True)
|
49 |
|
50 |
+
# Header section
|
51 |
+
st.markdown("<h1>Welcome to Data Science Introduction</h1>", unsafe_allow_html=True)
|
52 |
+
|
53 |
+
# Main content
|
54 |
st.markdown(
|
55 |
"""
|
56 |
+
<div class="division">
|
57 |
<h2>What is Data Science?</h2>
|
58 |
<p>
|
59 |
+
Data science combines techniques from statistics, computer science, mathematics, and domain expertise
|
60 |
+
to analyze and interpret data effectively. It transforms raw data into actionable insights, driving smarter
|
61 |
+
decisions across industries.
|
62 |
</p>
|
63 |
<ul>
|
64 |
+
<li>Analyzing customer reviews to identify product sentiment</li>
|
65 |
+
<li>Techniques Used: Natural Language Processing (NLP), sentiment analysis</li>
|
66 |
<li>Optimizing delivery routes for logistics companies</li>
|
67 |
<li>Techniques Used: Graph algorithms, optimization techniques</li>
|
68 |
</ul>
|
69 |
</div>
|
70 |
|
71 |
+
<div class="division">
|
72 |
+
<h2>Key Steps in Data Science</h2>
|
73 |
+
<p>Data Science involves several steps, such as:</p>
|
74 |
+
<ul>
|
75 |
+
<li><strong>Understanding the Problem:</strong> Grasp the problem's nature and define clear objectives.</li>
|
76 |
+
<li><strong>Data Collection:</strong> Gather relevant data from multiple sources.</li>
|
77 |
+
<li><strong>Data Cleaning:</strong> Handle inconsistencies, missing values, and prepare data for analysis.</li>
|
78 |
+
<li><strong>Exploratory Data Analysis (EDA):</strong> Use visualization and summary statistics to understand data.</li>
|
79 |
+
<li><strong>Model Deployment:</strong> Implement models in a production environment for real-time decision-making.</li>
|
|
|
|
|
80 |
</ul>
|
81 |
</div>
|
82 |
""",
|
83 |
unsafe_allow_html=True
|
84 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|