ronakreddy18 commited on
Commit
b373c73
·
verified ·
1 Parent(s): 6686d41

Update pages/introds.py

Browse files
Files changed (1) hide show
  1. pages/introds.py +7 -7
pages/introds.py CHANGED
@@ -1,19 +1,18 @@
1
- import streamlit as st # Aliased streamlit as 'st' for consistency
2
  import pandas as pd
3
  import numpy as np
4
 
5
- # Header Section
6
  st.markdown(
7
  "<h1 style='text-align: center; color: Black;'>DATA SCIENCE INTRODUCTION</h1>",
8
  unsafe_allow_html=True
9
  )
10
 
11
- # Main Content Section
12
  st.markdown(
13
  """
14
- <h2 style='color: Black;'>What is Data Science</h2>
15
-
16
-
17
  <p>
18
  It combines techniques from statistics, computer science, mathematics, and domain expertise to analyze and interpret data effectively.
19
  In essence, data science transforms raw data into actionable insights, driving smarter decisions across industries.
@@ -23,7 +22,7 @@ st.markdown(
23
  <li>Analyzing customer reviews to identify product sentiment</li>
24
  <li>Techniques Used: Natural Language Processing (NLP), sentiment analysis.</li>
25
  <li>Optimizing delivery routes for logistics companies</li>
26
- <li>Techniques Used: Graph algorithms, optimization techniques.</li>
27
  </ul>
28
  </div>
29
 
@@ -49,4 +48,5 @@ st.markdown(
49
 
50
 
51
 
 
52
 
 
1
+ import streamlit as st
2
  import pandas as pd
3
  import numpy as np
4
 
5
+ # Add header section
6
  st.markdown(
7
  "<h1 style='text-align: center; color: Black;'>DATA SCIENCE INTRODUCTION</h1>",
8
  unsafe_allow_html=True
9
  )
10
 
11
+ # Main content with properly formatted HTML
12
  st.markdown(
13
  """
14
+ <div class="section">
15
+ <h2>What is Data Science?</h2>
 
16
  <p>
17
  It combines techniques from statistics, computer science, mathematics, and domain expertise to analyze and interpret data effectively.
18
  In essence, data science transforms raw data into actionable insights, driving smarter decisions across industries.
 
22
  <li>Analyzing customer reviews to identify product sentiment</li>
23
  <li>Techniques Used: Natural Language Processing (NLP), sentiment analysis.</li>
24
  <li>Optimizing delivery routes for logistics companies</li>
25
+ <li>Techniques Used: Graph algorithms, optimization techniques</li>
26
  </ul>
27
  </div>
28
 
 
48
 
49
 
50
 
51
+
52