Update pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py
Browse files
pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py
CHANGED
@@ -1,6 +1,17 @@
|
|
1 |
import streamlit as st
|
2 |
|
3 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
if 'page' not in st.session_state:
|
5 |
st.session_state.page = "home" # Default page is "home"
|
6 |
|
@@ -9,11 +20,10 @@ def home_page():
|
|
9 |
st.title(":green[Lifecycle of a Machine Learning Project]")
|
10 |
st.markdown("Click on a stage to learn more about it.")
|
11 |
|
12 |
-
#
|
13 |
-
if st.button(":
|
14 |
st.session_state.page = "data_collection"
|
15 |
|
16 |
-
# Buttons for other stages with brief explanations
|
17 |
if st.button(":blue[π Problem Statement]"):
|
18 |
st.markdown("### Problem Statement\nIdentify the problem you want to solve and set clear objectives and success criteria.")
|
19 |
|
@@ -47,19 +57,15 @@ def data_collection_page():
|
|
47 |
st.markdown("### Data Collection\nThis page discusses the process of Data Collection.")
|
48 |
st.markdown("Types of Data: **Structured**, **Unstructured**, **Semi-Structured**")
|
49 |
|
50 |
-
# Button for Structured Data
|
51 |
if st.button(":blue[π Structured Data]"):
|
52 |
st.session_state.page = "structured_data"
|
53 |
|
54 |
-
# Button for Unstructured Data
|
55 |
if st.button(":blue[π· Unstructured Data]"):
|
56 |
st.session_state.page = "unstructured_data"
|
57 |
|
58 |
-
# Button for Semi-Structured Data
|
59 |
if st.button(":blue[ποΈ Semi-Structured Data]"):
|
60 |
st.session_state.page = "semi_structured_data"
|
61 |
|
62 |
-
# Back to Home button
|
63 |
if st.button("Back to Home"):
|
64 |
st.session_state.page = "home"
|
65 |
|
@@ -71,11 +77,9 @@ def structured_data_page():
|
|
71 |
""")
|
72 |
st.markdown("### Examples: Excel files, CSV files")
|
73 |
|
74 |
-
# Button for Excel Details
|
75 |
if st.button(":green[π Excel]"):
|
76 |
st.session_state.page = "excel"
|
77 |
|
78 |
-
# Back to Data Collection
|
79 |
if st.button("Back to Data Collection"):
|
80 |
st.session_state.page = "data_collection"
|
81 |
|
@@ -83,11 +87,9 @@ def structured_data_page():
|
|
83 |
def excel_page():
|
84 |
st.title(":green[Excel Data Format]")
|
85 |
|
86 |
-
# 4a. What it is
|
87 |
st.write("### What is Excel?")
|
88 |
-
st.write("Excel is a spreadsheet tool for storing data in tabular format with rows and columns. Common file extensions:
|
89 |
|
90 |
-
# 4b. How to read Excel files
|
91 |
st.write("### How to Read Excel Files")
|
92 |
st.code("""
|
93 |
import pandas as pd
|
@@ -97,15 +99,13 @@ df = pd.read_excel('data.xlsx', sheet_name='Sheet1')
|
|
97 |
print(df)
|
98 |
""", language='python')
|
99 |
|
100 |
-
# 4c. Issues encountered
|
101 |
st.write("### Issues Encountered")
|
102 |
st.write("""
|
103 |
- **File not found**: Incorrect file path.
|
104 |
- **Sheet name error**: Specified sheet doesn't exist.
|
105 |
-
- **Missing libraries**:
|
106 |
""")
|
107 |
|
108 |
-
# 4d. Solutions
|
109 |
st.write("### Solutions to These Issues")
|
110 |
st.code("""
|
111 |
# Install required libraries
|
@@ -122,7 +122,7 @@ excel_file = pd.ExcelFile('data.xlsx')
|
|
122 |
print(excel_file.sheet_names)
|
123 |
""", language='python')
|
124 |
|
125 |
-
# Download
|
126 |
with open("excel_handling_guide.ipynb", "rb") as file:
|
127 |
st.download_button(
|
128 |
label="Download Jupyter Notebook",
|
@@ -131,31 +131,188 @@ print(excel_file.sheet_names)
|
|
131 |
mime="application/octet-stream"
|
132 |
)
|
133 |
|
134 |
-
# Back to Structured Data
|
135 |
if st.button("Back to Structured Data"):
|
136 |
st.session_state.page = "structured_data"
|
137 |
|
138 |
# ----------------- Unstructured Data Page -----------------
|
139 |
def unstructured_data_page():
|
140 |
st.title(":blue[Unstructured Data]")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
st.markdown("""
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
""")
|
144 |
|
145 |
# Back to Data Collection
|
146 |
if st.button("Back to Data Collection"):
|
147 |
-
st.session_state.page = "data_collection"
|
148 |
|
149 |
# ----------------- Semi-Structured Data Page -----------------
|
150 |
def semi_structured_data_page():
|
151 |
st.title(":blue[Semi-Structured Data]")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
st.markdown("""
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
""")
|
155 |
|
156 |
# Back to Data Collection
|
157 |
if st.button("Back to Data Collection"):
|
158 |
-
st.session_state.page = "data_collection"
|
159 |
|
160 |
# ----------------- Router -----------------
|
161 |
def router():
|
@@ -175,5 +332,3 @@ def router():
|
|
175 |
# Run the router function
|
176 |
if __name__ == "__main__":
|
177 |
router()
|
178 |
-
|
179 |
-
|
|
|
1 |
import streamlit as st
|
2 |
|
3 |
+
# Inject custom CSS to style the buttons
|
4 |
+
st.markdown("""
|
5 |
+
<style>
|
6 |
+
.stButton>button {
|
7 |
+
background-color: #4CAF50;
|
8 |
+
color: white;
|
9 |
+
width: 100%;
|
10 |
+
}
|
11 |
+
</style>
|
12 |
+
""", unsafe_allow_html=True)
|
13 |
+
|
14 |
+
# Initialize page navigation state
|
15 |
if 'page' not in st.session_state:
|
16 |
st.session_state.page = "home" # Default page is "home"
|
17 |
|
|
|
20 |
st.title(":green[Lifecycle of a Machine Learning Project]")
|
21 |
st.markdown("Click on a stage to learn more about it.")
|
22 |
|
23 |
+
# Buttons for various stages of the ML project lifecycle
|
24 |
+
if st.button(":blue[π Data Collection]"):
|
25 |
st.session_state.page = "data_collection"
|
26 |
|
|
|
27 |
if st.button(":blue[π Problem Statement]"):
|
28 |
st.markdown("### Problem Statement\nIdentify the problem you want to solve and set clear objectives and success criteria.")
|
29 |
|
|
|
57 |
st.markdown("### Data Collection\nThis page discusses the process of Data Collection.")
|
58 |
st.markdown("Types of Data: **Structured**, **Unstructured**, **Semi-Structured**")
|
59 |
|
|
|
60 |
if st.button(":blue[π Structured Data]"):
|
61 |
st.session_state.page = "structured_data"
|
62 |
|
|
|
63 |
if st.button(":blue[π· Unstructured Data]"):
|
64 |
st.session_state.page = "unstructured_data"
|
65 |
|
|
|
66 |
if st.button(":blue[ποΈ Semi-Structured Data]"):
|
67 |
st.session_state.page = "semi_structured_data"
|
68 |
|
|
|
69 |
if st.button("Back to Home"):
|
70 |
st.session_state.page = "home"
|
71 |
|
|
|
77 |
""")
|
78 |
st.markdown("### Examples: Excel files, CSV files")
|
79 |
|
|
|
80 |
if st.button(":green[π Excel]"):
|
81 |
st.session_state.page = "excel"
|
82 |
|
|
|
83 |
if st.button("Back to Data Collection"):
|
84 |
st.session_state.page = "data_collection"
|
85 |
|
|
|
87 |
def excel_page():
|
88 |
st.title(":green[Excel Data Format]")
|
89 |
|
|
|
90 |
st.write("### What is Excel?")
|
91 |
+
st.write("Excel is a spreadsheet tool for storing data in tabular format with rows and columns. Common file extensions: .xls, .xlsx.")
|
92 |
|
|
|
93 |
st.write("### How to Read Excel Files")
|
94 |
st.code("""
|
95 |
import pandas as pd
|
|
|
99 |
print(df)
|
100 |
""", language='python')
|
101 |
|
|
|
102 |
st.write("### Issues Encountered")
|
103 |
st.write("""
|
104 |
- **File not found**: Incorrect file path.
|
105 |
- **Sheet name error**: Specified sheet doesn't exist.
|
106 |
+
- **Missing libraries**: openpyxl or xlrd might be missing.
|
107 |
""")
|
108 |
|
|
|
109 |
st.write("### Solutions to These Issues")
|
110 |
st.code("""
|
111 |
# Install required libraries
|
|
|
122 |
print(excel_file.sheet_names)
|
123 |
""", language='python')
|
124 |
|
125 |
+
# Download button for a sample Jupyter notebook
|
126 |
with open("excel_handling_guide.ipynb", "rb") as file:
|
127 |
st.download_button(
|
128 |
label="Download Jupyter Notebook",
|
|
|
131 |
mime="application/octet-stream"
|
132 |
)
|
133 |
|
|
|
134 |
if st.button("Back to Structured Data"):
|
135 |
st.session_state.page = "structured_data"
|
136 |
|
137 |
# ----------------- Unstructured Data Page -----------------
|
138 |
def unstructured_data_page():
|
139 |
st.title(":blue[Unstructured Data]")
|
140 |
+
|
141 |
+
st.markdown("""
|
142 |
+
**Unstructured data** does not have a predefined format. It consists of various data types like text, images, videos, and audio files.
|
143 |
+
Examples include:
|
144 |
+
- Text documents (e.g., .txt, .docx)
|
145 |
+
- Images (e.g., .jpg, .png)
|
146 |
+
- Videos (e.g., .mp4, .avi)
|
147 |
+
- Audio files (e.g., .mp3, .wav)
|
148 |
+
- Social media posts
|
149 |
+
""")
|
150 |
+
|
151 |
+
st.header("π Handling Text Data")
|
152 |
st.markdown("""
|
153 |
+
Text data can be analyzed using Natural Language Processing (NLP) techniques.
|
154 |
+
""")
|
155 |
+
st.code("""
|
156 |
+
# Reading text data
|
157 |
+
with open('sample.txt', 'r') as file:
|
158 |
+
text = file.read()
|
159 |
+
print(text)
|
160 |
+
|
161 |
+
# Basic text processing using NLTK
|
162 |
+
import nltk
|
163 |
+
from nltk.tokenize import word_tokenize
|
164 |
+
|
165 |
+
nltk.download('punkt')
|
166 |
+
tokens = word_tokenize(text)
|
167 |
+
print(tokens)
|
168 |
+
""", language='python')
|
169 |
+
|
170 |
+
st.header("πΌοΈ Handling Image Data")
|
171 |
+
st.markdown("""
|
172 |
+
Image data can be processed using libraries like OpenCV and PIL (Pillow).
|
173 |
+
""")
|
174 |
+
st.code("""
|
175 |
+
from PIL import Image
|
176 |
+
|
177 |
+
# Open an image file
|
178 |
+
image = Image.open('sample_image.jpg')
|
179 |
+
image.show()
|
180 |
+
|
181 |
+
# Convert image to grayscale
|
182 |
+
gray_image = image.convert('L')
|
183 |
+
gray_image.show()
|
184 |
+
""", language='python')
|
185 |
+
|
186 |
+
st.header("π₯ Handling Video Data")
|
187 |
+
st.markdown("""
|
188 |
+
Videos can be processed frame by frame using OpenCV.
|
189 |
+
""")
|
190 |
+
st.code("""
|
191 |
+
import cv2
|
192 |
+
|
193 |
+
# Capture video
|
194 |
+
video = cv2.VideoCapture('sample_video.mp4')
|
195 |
+
|
196 |
+
while video.isOpened():
|
197 |
+
ret, frame = video.read()
|
198 |
+
if not ret:
|
199 |
+
break
|
200 |
+
cv2.imshow('Frame', frame)
|
201 |
+
if cv2.waitKey(25) & 0xFF == ord('q'):
|
202 |
+
break
|
203 |
+
|
204 |
+
video.release()
|
205 |
+
cv2.destroyAllWindows()
|
206 |
+
""", language='python')
|
207 |
+
|
208 |
+
st.header("π Handling Audio Data")
|
209 |
+
st.markdown("""
|
210 |
+
Audio data can be handled using libraries like librosa.
|
211 |
+
""")
|
212 |
+
st.code("""
|
213 |
+
import librosa
|
214 |
+
import librosa.display
|
215 |
+
import matplotlib.pyplot as plt
|
216 |
+
|
217 |
+
# Load audio file
|
218 |
+
y, sr = librosa.load('sample_audio.mp3')
|
219 |
+
librosa.display.waveshow(y, sr=sr)
|
220 |
+
plt.title('Waveform')
|
221 |
+
plt.show()
|
222 |
+
""", language='python')
|
223 |
+
|
224 |
+
st.markdown("### Challenges with Unstructured Data")
|
225 |
+
st.write("""
|
226 |
+
- **Noise and Inconsistency**: Data is often incomplete or noisy.
|
227 |
+
- **Storage Requirements**: Large size and variability in data types.
|
228 |
+
- **Processing Time**: Analyzing unstructured data is computationally expensive.
|
229 |
+
""")
|
230 |
+
|
231 |
+
st.markdown("### Solutions")
|
232 |
+
st.write("""
|
233 |
+
- **Data Cleaning**: Preprocess data to remove noise.
|
234 |
+
- **Efficient Storage**: Use NoSQL databases (e.g., MongoDB) or cloud storage.
|
235 |
+
- **Parallel Processing**: Utilize frameworks like Apache Spark.
|
236 |
""")
|
237 |
|
238 |
# Back to Data Collection
|
239 |
if st.button("Back to Data Collection"):
|
240 |
+
st.session_state.page = "data_collection"
|
241 |
|
242 |
# ----------------- Semi-Structured Data Page -----------------
|
243 |
def semi_structured_data_page():
|
244 |
st.title(":blue[Semi-Structured Data]")
|
245 |
+
|
246 |
+
st.markdown("""
|
247 |
+
**Semi-structured data** does not conform strictly to a tabular structure but contains tags or markers to separate elements. Examples include:
|
248 |
+
- JSON (JavaScript Object Notation) files
|
249 |
+
- XML (Extensible Markup Language) files
|
250 |
+
- YAML (Yet Another Markup Language)
|
251 |
+
""")
|
252 |
+
|
253 |
+
st.header("πΉ JSON Data")
|
254 |
+
st.markdown("""
|
255 |
+
JSON is a popular format for storing and exchanging data.
|
256 |
+
""")
|
257 |
+
st.code("""
|
258 |
+
# Sample JSON data
|
259 |
+
data = '''
|
260 |
+
{
|
261 |
+
"name": "Alice",
|
262 |
+
"age": 25,
|
263 |
+
"skills": ["Python", "Machine Learning"]
|
264 |
+
}
|
265 |
+
'''
|
266 |
+
|
267 |
+
# Parse JSON
|
268 |
+
parsed_data = json.loads(data)
|
269 |
+
print(parsed_data['name']) # Output: Alice
|
270 |
+
""", language='python')
|
271 |
+
|
272 |
+
st.header("πΉ Reading JSON Files")
|
273 |
+
st.code("""
|
274 |
+
# Reading a JSON file
|
275 |
+
with open('data.json', 'r') as file:
|
276 |
+
data = json.load(file)
|
277 |
+
print(data)
|
278 |
+
""", language='python')
|
279 |
+
|
280 |
+
st.header("πΉ XML Data")
|
281 |
st.markdown("""
|
282 |
+
XML is a markup language that defines a set of rules for encoding documents.
|
283 |
+
""")
|
284 |
+
st.code("""
|
285 |
+
import xml.etree.ElementTree as ET
|
286 |
+
|
287 |
+
# Sample XML data
|
288 |
+
xml_data = '''
|
289 |
+
<person>
|
290 |
+
<name>Bob</name>
|
291 |
+
<age>30</age>
|
292 |
+
<city>New York</city>
|
293 |
+
</person>
|
294 |
+
'''
|
295 |
+
|
296 |
+
# Parse XML
|
297 |
+
root = ET.fromstring(xml_data)
|
298 |
+
print(root.find('name').text) # Output: Bob
|
299 |
+
""", language='python')
|
300 |
+
|
301 |
+
st.markdown("### Challenges with Semi-Structured Data")
|
302 |
+
st.write("""
|
303 |
+
- **Complex Parsing**: Requires specialized parsers.
|
304 |
+
- **Nested Data**: Can be deeply nested, making it harder to process.
|
305 |
+
""")
|
306 |
+
|
307 |
+
st.markdown("### Solutions")
|
308 |
+
st.write("""
|
309 |
+
- **Libraries**: Use libraries like json, xml.etree.ElementTree, and yaml for parsing.
|
310 |
+
- **Validation**: Validate data formats to avoid parsing errors.
|
311 |
""")
|
312 |
|
313 |
# Back to Data Collection
|
314 |
if st.button("Back to Data Collection"):
|
315 |
+
st.session_state.page = "data_collection"
|
316 |
|
317 |
# ----------------- Router -----------------
|
318 |
def router():
|
|
|
332 |
# Run the router function
|
333 |
if __name__ == "__main__":
|
334 |
router()
|
|
|
|