Zerotoheroinmachinelearning / pages /LIFE_CYCLE_OF_MACHINE_LEARNING.py
ronakreddy18's picture
Update pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py
df988c2 verified
raw
history blame
13.7 kB
import streamlit as st
import pandas as pd
import json
import xml.etree.ElementTree as ET
# Inject custom CSS to style the buttons
st.markdown("""
<style>
.stButton>button {
background-color: #4CAF50;
color: white;
width: 100%;
}
</style>
""", unsafe_allow_html=True)
# Initialize page navigation state
if 'page' not in st.session_state:
st.session_state.page = "home" # Default page is "home"
# ----------------- Home Page -----------------
def home_page():
st.title(":green[Lifecycle of a Machine Learning Project]")
st.markdown("Click on a stage to learn more about it.")
# Buttons for various stages of the ML project lifecycle
if st.button(":blue[πŸ“Š Data Collection]"):
st.session_state.page = "data_collection"
if st.button(":blue[🌟 Problem Statement]"):
st.markdown("### Problem Statement\nIdentify the problem you want to solve and set clear objectives and success criteria.")
if st.button(":blue[πŸ› οΈ Simple EDA]"):
st.markdown("### Simple EDA\nPerform exploratory data analysis to understand data distributions and relationships.")
if st.button(":blue[🧹 Data Pre-Processing]"):
st.markdown("### Data Pre-Processing\nConvert raw data into cleaned data.")
if st.button(":blue[πŸ“ˆ Exploratory Data Analysis (EDA)]"):
st.markdown("### Exploratory Data Analysis (EDA)\nVisualize and analyze the data to understand its distributions and relationships.")
if st.button(":blue[πŸ‹οΈ Feature Engineering]"):
st.markdown("### Feature Engineering\nCreate new features from existing data.")
if st.button(":blue[πŸ€– Model Training]"):
st.markdown("### Model Training\nTrain the model using the training data and optimize its parameters.")
if st.button(":blue[πŸ”§ Model Testing]"):
st.markdown("### Model Testing\nAssess the model's performance using various metrics and cross-validation techniques.")
if st.button(":blue[πŸš€ Model Deployment]"):
st.markdown("### Model Deployment\nIntegrate the trained model into a production environment and monitor its performance.")
if st.button(":blue[πŸ“ Monitoring]"):
st.markdown("### Monitoring\nPeriodically retrain the model with new data and update features as needed.")
# ----------------- Data Collection Page -----------------
def data_collection_page():
st.title(":red[Data Collection]")
st.markdown("### Data Collection\nThis page discusses the process of Data Collection.")
st.markdown("Types of Data: **Structured**, **Unstructured**, **Semi-Structured**")
if st.button(":blue[🌟 Structured Data]"):
st.session_state.page = "structured_data"
if st.button(":blue[πŸ“· Unstructured Data]"):
st.session_state.page = "unstructured_data"
if st.button(":blue[πŸ—ƒοΈ Semi-Structured Data]"):
st.session_state.page = "semi_structured_data"
if st.button("Back to Home"):
st.session_state.page = "home"
# ----------------- Structured Data Page -----------------
def structured_data_page():
st.title(":blue[Structured Data]")
st.markdown("""
Structured data is highly organized and typically stored in tables like spreadsheets or databases. It is easy to search and analyze.
""")
st.markdown("### Examples: Excel files")
if st.button(":green[πŸ“Š Excel]"):
st.session_state.page = "excel"
if st.button("Back to Data Collection"):
st.session_state.page = "data_collection"
# ----------------- Excel Data Page -----------------
def excel_page():
st.title(":green[Excel Data Format]")
st.write("### What is Excel?")
st.write("Excel is a spreadsheet tool for storing data in tabular format with rows and columns. Common file extensions: .xls, .xlsx.")
st.write("### How to Read Excel Files")
st.code("""
import pandas as pd
# Read an Excel file
df = pd.read_excel('data.xlsx', sheet_name='Sheet1')
print(df)
""", language='python')
st.write("### Issues Encountered")
st.write("""
- **File not found**: Incorrect file path.
- **Sheet name error**: Specified sheet doesn't exist.
- **Missing libraries**: openpyxl or xlrd might be missing.
""")
st.write("### Solutions to These Issues")
st.code("""
# Install required libraries
# pip install openpyxl xlrd
# Handle missing file
try:
df = pd.read_excel('data.xlsx', sheet_name='Sheet1')
except FileNotFoundError:
print("File not found. Check the file path.")
# List available sheet names
excel_file = pd.ExcelFile('data.xlsx')
print(excel_file.sheet_names)
""", language='python')
st.markdown('[Jupyter Notebook](https://colab.research.google.com/drive/1Dv68m9hcRzXsLRlRit0uZc-8CB8U6VV3?usp=sharing)')
if st.button("Back to Structured Data"):
st.session_state.page = "structured_data"
# ----------------- Unstructured Data Page -----------------
def unstructured_data_page():
st.title(":blue[Unstructured Data]")
st.markdown("""
**Unstructured data** does not have a predefined format. It consists of various data types like text, images, videos, and audio files.
Examples include:
- Text documents (e.g., .txt, .docx)
- Images (e.g., .jpg, .png)
- Videos (e.g., .mp4, .avi)
- Audio files (e.g., .mp3, .wav)
- Social media posts
""")
st.header("πŸ“„ Handling Text Data")
st.markdown("""
Text data can be analyzed using Natural Language Processing (NLP) techniques.
""")
st.code("""
# Reading text data
with open('sample.txt', 'r') as file:
text = file.read()
print(text)
# Basic text processing using NLTK
import nltk
from nltk.tokenize import word_tokenize
nltk.download('punkt')
tokens = word_tokenize(text)
print(tokens)
""", language='python')
st.header("πŸ–ΌοΈ Handling Image Data")
st.markdown("""
Image data can be processed using libraries like OpenCV and PIL (Pillow).
""")
st.code("""
from PIL import Image
# Open an image file
image = Image.open('sample_image.jpg')
image.show()
# Convert image to grayscale
gray_image = image.convert('L')
gray_image.show()
""", language='python')
st.header("πŸŽ₯ Handling Video Data")
st.markdown("""
Videos can be processed frame by frame using OpenCV.
""")
st.code("""
import cv2
# Capture video
video = cv2.VideoCapture('sample_video.mp4')
while video.isOpened():
ret, frame = video.read()
if not ret:
break
cv2.imshow('Frame', frame)
if cv2.waitKey(25) & 0xFF == ord('q'):
break
video.release()
cv2.destroyAllWindows()
""", language='python')
st.header("πŸ”Š Handling Audio Data")
st.markdown("""
Audio data can be handled using libraries like librosa.
""")
st.code("""
import librosa
import librosa.display
import matplotlib.pyplot as plt
# Load audio file
y, sr = librosa.load('sample_audio.mp3')
librosa.display.waveshow(y, sr=sr)
plt.title('Waveform')
plt.show()
""", language='python')
st.markdown("### Challenges with Unstructured Data")
st.write("""
- **Noise and Inconsistency**: Data is often incomplete or noisy.
- **Storage Requirements**: Large size and variability in data types.
- **Processing Time**: Analyzing unstructured data is computationally expensive.
""")
st.markdown("### Solutions")
st.write("""
- **Data Cleaning**: Preprocess data to remove noise.
- **Efficient Storage**: Use NoSQL databases (e.g., MongoDB) or cloud storage.
- **Parallel Processing**: Utilize frameworks like Apache Spark.
""")
# Back to Data Collection
if st.button("Back to Data Collection"):
st.session_state.page = "data_collection"
# ----------------- Semi-Structured Data Page -----------------
def semi_structured_data_page():
st.title(":orange[Semi-Structured Data]")
st.markdown("""
Semi-structured data does not follow the rigid structure of relational databases but still has some organizational properties. Examples include:
- JSON files
- XML files
""")
if st.button(":green[πŸ’Ύ JSON]"):
st.session_state.page = "json"
if st.button(":green[πŸ“„ CSV]"):
st.session_state.page = "csv"
if st.button(":green[πŸ“„ XML]"):
st.session_state.page = "xml"
if st.button("Back to Data Collection"):
st.session_state.page = "data_collection"
# ----------------- JSON Data Page -----------------
def json_page():
st.title(":green[JSON Data Format]")
st.write("### What is JSON?")
st.write("""
JSON (JavaScript Object Notation) is a lightweight data-interchange format that's easy for humans to read and write, and easy for machines to parse and generate. JSON is often used in APIs, configuration files, and data transfer applications.
""")
st.write("### Reading JSON Files")
st.code("""
import json
# Read a JSON file
with open('data.json', 'r') as file:
data = json.load(file)
print(data)
""", language='python')
st.write("### Writing JSON Files")
st.code("""
import json
# Write data to JSON file
data = {
"name": "Alice",
"age": 25,
"skills": ["Python", "Machine Learning"]
}
with open('data.json', 'w') as file:
json.dump(data, file, indent=4)
""", language='python')
st.markdown("### Tips for Handling JSON Files")
st.write("""
- JSON files can be nested, so you might need to navigate through dictionaries and lists.
- If the structure is complex, you can use libraries like json_normalize() in pandas to flatten the JSON into a more tabular format for easier analysis.
- JSON supports both strings and numbers, and other types like arrays and booleans, making it versatile for various data types.
""")
st.markdown('[Jupyter Notebook](https://huggingface.co/spaces/ronakreddy18/Zerotoheroinmachinelearning/blob/main/pages/json_file__handling.ipynb)')
if st.button("Back to Semi-Structured Data"):
st.session_state.page = "semi_structured_data"
# ----------------- CSV Data Page -----------------
def csv_page():
st.title(":green[CSV Data Format]")
st.write("### What is CSV?")
st.write("""
CSV (Comma-Separated Values) files store tabular data in plain text, where each line is a data record and columns are separated by commas.
""")
st.write("### Reading CSV Files")
st.code("""
import pandas as pd
# Read a CSV file
df = pd.read_csv('data.csv')
print(df)
""", language='python')
st.write("### Error Handling for CSV Files")
st.code("""
import pandas as pd
try:
df = pd.read_csv('data.csv', encoding='utf-8', delimiter=',')
print("CSV File Loaded Successfully!")
print(df)
except FileNotFoundError:
print("Error: File not found. Please check the file path.")
except pd.errors.ParserError:
print("Error: The file is not a valid CSV format.")
except UnicodeDecodeError:
print("Error: Encoding issue. Try specifying a different encoding like 'latin1' or 'utf-8'.")
""", language='python')
st.markdown('[Jupyter Notebook](https://huggingface.co/spaces/ronakreddy18/Zerotoheroinmachinelearning/blob/main/pages/CSV_HANDLING_GUIDE.ipynb)')
if st.button("Back to Semi-Structured Data"):
st.session_state.page = "semi_structured_data"
# ----------------- XML Data Page -----------------
def xml_page():
st.title(":green[XML Data Format]")
st.write("### What is XML?")
st.write("""
XML (Extensible Markup Language) is a markup language used for storing and exchanging structured data. It uses a hierarchical structure with tags to define elements.
""")
st.write("### Reading XML Files")
st.code("""
import xml.etree.ElementTree as ET
# Load and parse an XML file
tree = ET.parse('data.xml')
root = tree.getroot()
# Access elements
for child in root:
print(child.tag, child.text)
""", language='python')
st.write("### Sample XML Data")
st.code("""
<company>
<employee>
<name>John Doe</name>
<role>Developer</role>
</employee>
<employee>
<name>Jane Smith</name>
<role>Manager</role>
</employee>
</company>
""", language='xml')
st.write("### Issues Encountered")
st.write("""
- **File not found**: The specified XML file path is incorrect.
- **Malformed XML**: The XML structure has syntax errors.
- **XPath Errors**: Incorrect XPath expressions when querying data.
""")
st.write("### Solutions to These Issues")
st.code("""
# Handle missing file
try:
tree = ET.parse('data.xml')
except FileNotFoundError:
print("File not found. Check the file path.")
# Validate XML structure
try:
root = ET.fromstring(xml_data)
except ET.ParseError:
print("Malformed XML.")
""", language='python')
st.markdown('[Jupyter Notebook](https://colab.research.google.com/drive/1Dv68m9hcRzXsLRlRit0uZc-8CB8U6VV3?usp=sharing)')
# Back to Semi-Structured Data
if st.button("Back to Semi-Structured Data"):
st.session_state.page = "semi_structured_data"
# Main control to call appropriate page
if st.session_state.page == "home":
home_page()
elif st.session_state.page == "data_collection":
data_collection_page()
elif st.session_state.page == "structured_data":
structured_data_page()
elif st.session_state.page == "excel":
excel_page()
elif st.session_state.page == "csv":
csv_page()
elif st.session_state.page == "json":
json_page()
elif st.session_state.page == "unstructured_data":
unstructured_data_page()
elif st.session_state.page == "semi_structured_data":
semi_structured_data_page()
elif st.session_state.page == "xml":
xml_page()