|
import streamlit as st |
|
|
|
|
|
custom_css = """ |
|
<style> |
|
html, body, [data-testid="stAppViewContainer"] { |
|
background: linear-gradient( |
|
rgba(0, 0, 0, 0.6), |
|
rgba(0, 0, 0, 0.6) |
|
), |
|
url("https://cdn.pixabay.com/photo/2023/11/23/17/47/sunset-7704533_1280.jpg") no-repeat center center fixed; |
|
background-size: cover; |
|
font-family: Arial, sans-serif; |
|
color: #ffffff; |
|
} |
|
h1 { |
|
color: #ffffff; |
|
text-align: center; |
|
font-size: 2rem; |
|
margin-top: 2px; |
|
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.7); |
|
} |
|
.division { |
|
margin: 20px auto; |
|
padding: 20px; |
|
background: rgba(255, 255, 255, 0.1); |
|
border-radius: 10px; |
|
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); |
|
} |
|
.division h2 { |
|
color: #ffffff; |
|
margin-bottom: 10px; |
|
font-size: 2rem; |
|
text-shadow: 1px 1px 3px rgba(0, 0, 0, 0.7); |
|
} |
|
.division ul li { |
|
font-size: 1.2rem; |
|
line-height: 1.7; |
|
margin-bottom: 8px; |
|
} |
|
</style> |
|
""" |
|
|
|
|
|
st.markdown(custom_css, unsafe_allow_html=True) |
|
|
|
|
|
st.markdown("<h1>DIFFERENCES BETWEEN ML AND DL</h1>", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown( |
|
""" |
|
<div class="division"> |
|
<h2>Key Points in Machine Learning</h2> |
|
<ul> |
|
<li><strong>Data Points:</strong> Machine Learning models can be trained on smaller datasets.</li> |
|
<li><strong>Hardware for Training:</strong> Training can be done on standard CPUs.</li> |
|
<li><strong>Training Time:</strong> Requires less time due to smaller dataset sizes and simpler algorithms.</li> |
|
<li><strong>Algorithm Complexity:</strong> Includes simpler models like linear regression and more complex ones like decision trees or random forests.</li> |
|
<li><strong>Analysis Complexity:</strong> Involves identifying patterns and relationships in data.</li> |
|
<li><strong>Application Areas:</strong> Widely used for tasks such as regression, classification, and clustering.</li> |
|
</ul> |
|
</div> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
st.markdown( |
|
""" |
|
<div class="division"> |
|
<h2>Key Points in Deep Leraning</h2> |
|
<ul> |
|
<li><strong>Data Points:</strong> Machine Learning models csan be trained on larger dataset.</li> |
|
<li><strong>Hardware for Training:</strong> Training can be done on GPUs.</li> |
|
<li><strong>Training Time:</strong> Requires more time due to larger dataset sizes and bigger algorithms.</li> |
|
<li><strong>Algorithm Complexity:</strong> Deep learning algorithms are based on artificial neural networks that consist of multiple layers and nodes..</li> |
|
<li><strong>Analysis Complexity:</strong>Uses complex neural networks with multiple layers to analyze more intricate patterns and relationships.</li> |
|
<li><strong>Application Areas:</strong> Deep learning is mostly used for complex tasks such as image and speech recognition, natural language processing, and autonomous systems.</li> |
|
</ul> |
|
</div> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|