FloVD / tools /caption /video_caption.py
roll-ai's picture
Upload 185 files
4e7b4da verified
raw
history blame
3.45 kB
import io
import argparse
import numpy as np
import torch
from decord import cpu, VideoReader, bridge
from transformers import AutoModelForCausalLM, AutoTokenizer
MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[
0] >= 8 else torch.float16
parser = argparse.ArgumentParser(description="CogVLM2-Video CLI Demo")
parser.add_argument('--quant', type=int, choices=[4, 8], help='Enable 4-bit or 8-bit precision loading', default=0)
args = parser.parse_args([])
def load_video(video_data, strategy='chat'):
bridge.set_bridge('torch')
mp4_stream = video_data
num_frames = 24
decord_vr = VideoReader(io.BytesIO(mp4_stream), ctx=cpu(0))
frame_id_list = None
total_frames = len(decord_vr)
if strategy == 'base':
clip_end_sec = 60
clip_start_sec = 0
start_frame = int(clip_start_sec * decord_vr.get_avg_fps())
end_frame = min(total_frames,
int(clip_end_sec * decord_vr.get_avg_fps())) if clip_end_sec is not None else total_frames
frame_id_list = np.linspace(start_frame, end_frame - 1, num_frames, dtype=int)
elif strategy == 'chat':
timestamps = decord_vr.get_frame_timestamp(np.arange(total_frames))
timestamps = [i[0] for i in timestamps]
max_second = round(max(timestamps)) + 1
frame_id_list = []
for second in range(max_second):
closest_num = min(timestamps, key=lambda x: abs(x - second))
index = timestamps.index(closest_num)
frame_id_list.append(index)
if len(frame_id_list) >= num_frames:
break
video_data = decord_vr.get_batch(frame_id_list)
video_data = video_data.permute(3, 0, 1, 2)
return video_data
tokenizer = AutoTokenizer.from_pretrained(
MODEL_PATH,
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=TORCH_TYPE,
trust_remote_code=True
).eval().to(DEVICE)
def predict(prompt, video_data, temperature):
strategy = 'chat'
video = load_video(video_data, strategy=strategy)
history = []
query = prompt
inputs = model.build_conversation_input_ids(
tokenizer=tokenizer,
query=query,
images=[video],
history=history,
template_version=strategy
)
inputs = {
'input_ids': inputs['input_ids'].unsqueeze(0).to('cuda'),
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to('cuda'),
'attention_mask': inputs['attention_mask'].unsqueeze(0).to('cuda'),
'images': [[inputs['images'][0].to('cuda').to(TORCH_TYPE)]],
}
gen_kwargs = {
"max_new_tokens": 2048,
"pad_token_id": 128002,
"top_k": 1,
"do_sample": False,
"top_p": 0.1,
"temperature": temperature,
}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
def test():
prompt = "Please describe this video in detail."
temperature = 0.1
video_data = open('test.mp4', 'rb').read()
response = predict(prompt, video_data, temperature)
print(response)
if __name__ == '__main__':
test()