File size: 21,710 Bytes
4e7b4da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
# Shree KRISHNAya Namaha
# Differentiable warper implemented in PyTorch. Warping is done on batches.
# Tested on PyTorch 1.8.1
# Author: Nagabhushan S N
# Last Modified: 27/09/2021
# Code from https://github.com/NagabhushanSN95/Pose-Warping
import datetime
import time
import traceback
from pathlib import Path
from typing import Tuple, Optional
import numpy
# import skimage.io
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
# import Imath
# import OpenEXR
import pdb
class Warper:
def __init__(self, resolution: tuple = None):
self.resolution = resolution
def forward_warp(self, frame1: torch.Tensor, mask1: Optional[torch.Tensor], depth1: torch.Tensor,
transformation1: torch.Tensor, transformation2: torch.Tensor, intrinsic1: torch.Tensor,
intrinsic2: Optional[torch.Tensor], is_image=True) -> \
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Given a frame1 and global transformations transformation1 and transformation2, warps frame1 to next view using
bilinear splatting.
All arrays should be torch tensors with batch dimension and channel first
:param frame1: (b, 3, h, w). If frame1 is not in the range [-1, 1], either set is_image=False when calling
bilinear_splatting on frame within this function, or modify clipping in bilinear_splatting()
method accordingly.
:param mask1: (b, 1, h, w) - 1 for known, 0 for unknown. Optional
:param depth1: (b, 1, h, w)
:param transformation1: (b, 4, 4) extrinsic transformation matrix of first view: [R, t; 0, 1]
:param transformation2: (b, 4, 4) extrinsic transformation matrix of second view: [R, t; 0, 1]
:param intrinsic1: (b, 3, 3) camera intrinsic matrix
:param intrinsic2: (b, 3, 3) camera intrinsic matrix. Optional
"""
self.device = frame1.device
if self.resolution is not None:
assert frame1.shape[2:4] == self.resolution
b, c, h, w = frame1.shape
if mask1 is None:
mask1 = torch.ones(size=(b, 1, h, w)).to(frame1)
if intrinsic2 is None:
intrinsic2 = intrinsic1.clone()
assert frame1.shape == (b, 3, h, w) or frame1.shape == (b, 2, h, w) # flow b2hw
assert mask1.shape == (b, 1, h, w)
assert depth1.shape == (b, 1, h, w)
assert transformation1.shape == (b, 4, 4)
assert transformation2.shape == (b, 4, 4)
assert intrinsic1.shape == (b, 3, 3)
assert intrinsic2.shape == (b, 3, 3)
frame1 = frame1.to(self.device)
mask1 = mask1.to(self.device)
depth1 = depth1.to(self.device)
transformation1 = transformation1.to(self.device)
transformation2 = transformation2.to(self.device)
intrinsic1 = intrinsic1.to(self.device)
intrinsic2 = intrinsic2.to(self.device)
trans_points1 = self.compute_transformed_points(depth1, transformation1, transformation2, intrinsic1,
intrinsic2)
# trans_coordinates = trans_points1[:, :, :2, 0] / trans_points1[:, :, 2:3, 0]
trans_coordinates = trans_points1[:, :, :, :2, 0] / (trans_points1[:, :, :, 2:3, 0]+1e-7)
trans_depth1 = rearrange(trans_points1[:, :, :, 2:3, 0], "b h w c -> b c h w")
grid = self.create_grid(b, h, w).to(trans_coordinates)
flow12 = rearrange(trans_coordinates, "b h w c -> b c h w") - grid
warped_frame2, mask2 = self.bilinear_splatting(frame1, mask1, trans_depth1, flow12, None, is_image=is_image)
warped_depth2 = self.bilinear_splatting(trans_depth1, mask1, trans_depth1, flow12, None, is_image=False)[0] # [0][:, :, 0]
return warped_frame2, mask2, warped_depth2, flow12
def forward_warp_displacement(self, depth1: torch.Tensor, flow1: torch.Tensor,
transformation1: torch.Tensor, transformation2: torch.Tensor, intrinsic1: torch.Tensor, intrinsic2: Optional[torch.Tensor],):
"""
Given a frame1 and global transformations transformation1 and transformation2, warps frame1 to next view using
bilinear splatting.
All arrays should be torch tensors with batch dimension and channel first
:param depth1: (b, 1, h, w)
:param flow1: (b, 2, h, w)
:param transformation1: (b, 4, 4) extrinsic transformation matrix of first view: [R, t; 0, 1]
:param transformation2: (b, 4, 4) extrinsic transformation matrix of second view: [R, t; 0, 1]
:param intrinsic1: (b, 3, 3) camera intrinsic matrix
:param intrinsic2: (b, 3, 3) camera intrinsic matrix. Optional
"""
self.device = flow1.device
if self.resolution is not None:
assert flow1.shape[2:4] == self.resolution
b, c, h, w = flow1.shape
if intrinsic2 is None:
intrinsic2 = intrinsic1.clone()
assert flow1.shape == (b, 2, h, w)
assert depth1.shape == (b, 1, h, w)
assert transformation1.shape == (b, 4, 4)
assert transformation2.shape == (b, 4, 4)
assert intrinsic1.shape == (b, 3, 3)
assert intrinsic2.shape == (b, 3, 3)
depth1 = depth1.to(self.device)
flow1 = flow1.to(self.device)
transformation1 = transformation1.to(self.device)
transformation2 = transformation2.to(self.device)
intrinsic1 = intrinsic1.to(self.device)
intrinsic2 = intrinsic2.to(self.device)
trans_points1 = self.compute_transformed_points(depth1, transformation1, transformation2, intrinsic1, intrinsic2)
trans_coordinates1 = trans_points1[:, :, :, :2, 0] / (trans_points1[:, :, :, 2:3, 0]+1e-7)
trans_points2 = self.compute_transformed_points(depth1, transformation1, transformation2, intrinsic1, intrinsic2, flow1)
trans_coordinates2 = trans_points2[:, :, :, :2, 0] / (trans_points2[:, :, :, 2:3, 0]+1e-7)
flow12_displacement = rearrange(trans_coordinates2 - trans_coordinates1, "b h w c -> b c h w")
return flow12_displacement
def compute_transformed_points(self, depth1: torch.Tensor, transformation1: torch.Tensor, transformation2: torch.Tensor,
intrinsic1: torch.Tensor, intrinsic2: Optional[torch.Tensor], flow1: Optional[torch.Tensor]=None):
"""
Computes transformed position for each pixel location
"""
if self.resolution is not None:
assert depth1.shape[2:4] == self.resolution
b, _, h, w = depth1.shape
if intrinsic2 is None:
intrinsic2 = intrinsic1.clone()
transformation = torch.bmm(transformation2, torch.linalg.inv(transformation1)).to(transformation1.dtype) # (b, 4, 4)
x1d = torch.arange(0, w)[None]
y1d = torch.arange(0, h)[:, None]
x2d = x1d.repeat([h, 1]).to(depth1) # (h, w)
y2d = y1d.repeat([1, w]).to(depth1) # (h, w)
ones_2d = torch.ones(size=(h, w)).to(depth1) # (h, w)
ones_4d = ones_2d[None, :, :, None, None].repeat([b, 1, 1, 1, 1]) # (b, h, w, 1, 1)
if flow1 is not None:
x4d = repeat(x2d[None, :, :, None], '1 h w c -> b h w c', b=b)
y4d = repeat(y2d[None, :, :, None], '1 h w c -> b h w c', b=b)
flow1_x4d = rearrange(flow1[:,:1].detach().clone(), "b c h w -> b h w c")
flow1_y4d = rearrange(flow1[:,1:].detach().clone(), "b c h w -> b h w c")
x4d = x4d + flow1_x4d
y4d = y4d + flow1_y4d
pos_vectors_homo = torch.stack([x4d, y4d, ones_4d.squeeze(-1)], dim=3) # (b, h, w, 3, 1)
else:
pos_vectors_homo = torch.stack([x2d, y2d, ones_2d], dim=2)[None, :, :, :, None] # (1, h, w, 3, 1)
intrinsic1_inv = torch.linalg.inv(intrinsic1) # (b, 3, 3)
intrinsic1_inv_4d = intrinsic1_inv[:, None, None] # (b, 1, 1, 3, 3)
intrinsic2_4d = intrinsic2[:, None, None] # (b, 1, 1, 3, 3)
depth_4d = depth1[:, 0][:, :, :, None, None] # (b, h, w, 1, 1)
trans_4d = transformation[:, None, None] # (b, 1, 1, 4, 4)
unnormalized_pos = torch.matmul(intrinsic1_inv_4d, pos_vectors_homo).to(transformation1.dtype) # (b, h, w, 3, 1)
world_points = depth_4d * unnormalized_pos # (b, h, w, 3, 1)
world_points_homo = torch.cat([world_points, ones_4d], dim=3) # (b, h, w, 4, 1)
trans_world_homo = torch.matmul(trans_4d, world_points_homo).to(transformation1.dtype) # (b, h, w, 4, 1)
trans_world = trans_world_homo[:, :, :, :3] # (b, h, w, 3, 1)
trans_norm_points = torch.matmul(intrinsic2_4d, trans_world).to(transformation1.dtype) # (b, h, w, 3, 1)
return trans_norm_points
def bilinear_splatting(self, frame1: torch.Tensor, mask1: Optional[torch.Tensor], depth1: torch.Tensor,
flow12: torch.Tensor, flow12_mask: Optional[torch.Tensor], is_image: bool = False) -> \
Tuple[torch.Tensor, torch.Tensor]:
"""
Bilinear splatting
:param frame1: (b,c,h,w)
:param mask1: (b,1,h,w): 1 for known, 0 for unknown. Optional
:param depth1: (b,1,h,w)
:param flow12: (b,2,h,w)
:param flow12_mask: (b,1,h,w): 1 for valid flow, 0 for invalid flow. Optional
:param is_image: if true, output will be clipped to (-1,1) range
:return: warped_frame2: (b,c,h,w)
mask2: (b,1,h,w): 1 for known and 0 for unknown
"""
if self.resolution is not None:
assert frame1.shape[2:4] == self.resolution
b, c, h, w = frame1.shape
if mask1 is None:
mask1 = torch.ones(size=(b, 1, h, w)).to(frame1)
if flow12_mask is None:
flow12_mask = torch.ones(size=(b, 1, h, w)).to(flow12)
grid = self.create_grid(b, h, w).to(frame1)
trans_pos = flow12 + grid
trans_pos_offset = trans_pos + 1
trans_pos_floor = torch.floor(trans_pos_offset).long()
trans_pos_ceil = torch.ceil(trans_pos_offset).long()
trans_pos_offset = torch.stack([
torch.clamp(trans_pos_offset[:, 0], min=0, max=w + 1),
torch.clamp(trans_pos_offset[:, 1], min=0, max=h + 1)], dim=1)
trans_pos_floor = torch.stack([
torch.clamp(trans_pos_floor[:, 0], min=0, max=w + 1),
torch.clamp(trans_pos_floor[:, 1], min=0, max=h + 1)], dim=1)
trans_pos_ceil = torch.stack([
torch.clamp(trans_pos_ceil[:, 0], min=0, max=w + 1),
torch.clamp(trans_pos_ceil[:, 1], min=0, max=h + 1)], dim=1)
prox_weight_nw = (1 - (trans_pos_offset[:, 1:2] - trans_pos_floor[:, 1:2])) * \
(1 - (trans_pos_offset[:, 0:1] - trans_pos_floor[:, 0:1]))
prox_weight_sw = (1 - (trans_pos_ceil[:, 1:2] - trans_pos_offset[:, 1:2])) * \
(1 - (trans_pos_offset[:, 0:1] - trans_pos_floor[:, 0:1]))
prox_weight_ne = (1 - (trans_pos_offset[:, 1:2] - trans_pos_floor[:, 1:2])) * \
(1 - (trans_pos_ceil[:, 0:1] - trans_pos_offset[:, 0:1]))
prox_weight_se = (1 - (trans_pos_ceil[:, 1:2] - trans_pos_offset[:, 1:2])) * \
(1 - (trans_pos_ceil[:, 0:1] - trans_pos_offset[:, 0:1]))
sat_depth1 = torch.clamp(depth1, min=0, max=1000)
log_depth1 = torch.log(1 + sat_depth1)
depth_weights = torch.exp(log_depth1 / log_depth1.max() * 50)
weight_nw = torch.moveaxis(prox_weight_nw * mask1 * flow12_mask / depth_weights, [0, 1, 2, 3], [0, 3, 1, 2])
weight_sw = torch.moveaxis(prox_weight_sw * mask1 * flow12_mask / depth_weights, [0, 1, 2, 3], [0, 3, 1, 2])
weight_ne = torch.moveaxis(prox_weight_ne * mask1 * flow12_mask / depth_weights, [0, 1, 2, 3], [0, 3, 1, 2])
weight_se = torch.moveaxis(prox_weight_se * mask1 * flow12_mask / depth_weights, [0, 1, 2, 3], [0, 3, 1, 2])
warped_frame = torch.zeros(size=(b, h + 2, w + 2, c), dtype=torch.float32).to(frame1)
warped_weights = torch.zeros(size=(b, h + 2, w + 2, 1), dtype=torch.float32).to(frame1)
frame1_cl = torch.moveaxis(frame1, [0, 1, 2, 3], [0, 3, 1, 2])
batch_indices = torch.arange(b)[:, None, None].to(frame1.device)
warped_frame.index_put_((batch_indices, trans_pos_floor[:, 1], trans_pos_floor[:, 0]),
frame1_cl * weight_nw, accumulate=True)
warped_frame.index_put_((batch_indices, trans_pos_ceil[:, 1], trans_pos_floor[:, 0]),
frame1_cl * weight_sw, accumulate=True)
warped_frame.index_put_((batch_indices, trans_pos_floor[:, 1], trans_pos_ceil[:, 0]),
frame1_cl * weight_ne, accumulate=True)
warped_frame.index_put_((batch_indices, trans_pos_ceil[:, 1], trans_pos_ceil[:, 0]),
frame1_cl * weight_se, accumulate=True)
warped_weights.index_put_((batch_indices, trans_pos_floor[:, 1], trans_pos_floor[:, 0]),
weight_nw, accumulate=True)
warped_weights.index_put_((batch_indices, trans_pos_ceil[:, 1], trans_pos_floor[:, 0]),
weight_sw, accumulate=True)
warped_weights.index_put_((batch_indices, trans_pos_floor[:, 1], trans_pos_ceil[:, 0]),
weight_ne, accumulate=True)
warped_weights.index_put_((batch_indices, trans_pos_ceil[:, 1], trans_pos_ceil[:, 0]),
weight_se, accumulate=True)
warped_frame_cf = torch.moveaxis(warped_frame, [0, 1, 2, 3], [0, 2, 3, 1])
warped_weights_cf = torch.moveaxis(warped_weights, [0, 1, 2, 3], [0, 2, 3, 1])
cropped_warped_frame = warped_frame_cf[:, :, 1:-1, 1:-1]
cropped_weights = warped_weights_cf[:, :, 1:-1, 1:-1]
mask = cropped_weights > 0
zero_value = -1 if is_image else 0
zero_tensor = torch.tensor(zero_value, dtype=frame1.dtype, device=frame1.device)
warped_frame2 = torch.where(mask, cropped_warped_frame / cropped_weights, zero_tensor)
mask2 = mask.to(frame1)
if is_image:
assert warped_frame2.min() >= -1.1 # Allow for rounding errors
assert warped_frame2.max() <= 1.1
warped_frame2 = torch.clamp(warped_frame2, min=-1, max=1)
return warped_frame2, mask2
def bilinear_interpolation(self, frame2: torch.Tensor, mask2: Optional[torch.Tensor], flow12: torch.Tensor,
flow12_mask: Optional[torch.Tensor], is_image: bool = False) -> \
Tuple[torch.Tensor, torch.Tensor]:
"""
Bilinear interpolation
:param frame2: (b, c, h, w)
:param mask2: (b, 1, h, w): 1 for known, 0 for unknown. Optional
:param flow12: (b, 2, h, w)
:param flow12_mask: (b, 1, h, w): 1 for valid flow, 0 for invalid flow. Optional
:param is_image: if true, output will be clipped to (-1,1) range
:return: warped_frame1: (b, c, h, w)
mask1: (b, 1, h, w): 1 for known and 0 for unknown
"""
if self.resolution is not None:
assert frame2.shape[2:4] == self.resolution
b, c, h, w = frame2.shape
if mask2 is None:
mask2 = torch.ones(size=(b, 1, h, w)).to(frame2)
if flow12_mask is None:
flow12_mask = torch.ones(size=(b, 1, h, w)).to(flow12)
grid = self.create_grid(b, h, w).to(frame2)
trans_pos = flow12 + grid
trans_pos_offset = trans_pos + 1
trans_pos_floor = torch.floor(trans_pos_offset).long()
trans_pos_ceil = torch.ceil(trans_pos_offset).long()
trans_pos_offset = torch.stack([
torch.clamp(trans_pos_offset[:, 0], min=0, max=w + 1),
torch.clamp(trans_pos_offset[:, 1], min=0, max=h + 1)], dim=1)
trans_pos_floor = torch.stack([
torch.clamp(trans_pos_floor[:, 0], min=0, max=w + 1),
torch.clamp(trans_pos_floor[:, 1], min=0, max=h + 1)], dim=1)
trans_pos_ceil = torch.stack([
torch.clamp(trans_pos_ceil[:, 0], min=0, max=w + 1),
torch.clamp(trans_pos_ceil[:, 1], min=0, max=h + 1)], dim=1)
prox_weight_nw = (1 - (trans_pos_offset[:, 1:2] - trans_pos_floor[:, 1:2])) * \
(1 - (trans_pos_offset[:, 0:1] - trans_pos_floor[:, 0:1]))
prox_weight_sw = (1 - (trans_pos_ceil[:, 1:2] - trans_pos_offset[:, 1:2])) * \
(1 - (trans_pos_offset[:, 0:1] - trans_pos_floor[:, 0:1]))
prox_weight_ne = (1 - (trans_pos_offset[:, 1:2] - trans_pos_floor[:, 1:2])) * \
(1 - (trans_pos_ceil[:, 0:1] - trans_pos_offset[:, 0:1]))
prox_weight_se = (1 - (trans_pos_ceil[:, 1:2] - trans_pos_offset[:, 1:2])) * \
(1 - (trans_pos_ceil[:, 0:1] - trans_pos_offset[:, 0:1]))
weight_nw = torch.moveaxis(prox_weight_nw * flow12_mask, [0, 1, 2, 3], [0, 3, 1, 2])
weight_sw = torch.moveaxis(prox_weight_sw * flow12_mask, [0, 1, 2, 3], [0, 3, 1, 2])
weight_ne = torch.moveaxis(prox_weight_ne * flow12_mask, [0, 1, 2, 3], [0, 3, 1, 2])
weight_se = torch.moveaxis(prox_weight_se * flow12_mask, [0, 1, 2, 3], [0, 3, 1, 2])
frame2_offset = F.pad(frame2, [1, 1, 1, 1])
mask2_offset = F.pad(mask2, [1, 1, 1, 1])
bi = torch.arange(b)[:, None, None]
f2_nw = frame2_offset[bi, :, trans_pos_floor[:, 1], trans_pos_floor[:, 0]]
f2_sw = frame2_offset[bi, :, trans_pos_ceil[:, 1], trans_pos_floor[:, 0]]
f2_ne = frame2_offset[bi, :, trans_pos_floor[:, 1], trans_pos_ceil[:, 0]]
f2_se = frame2_offset[bi, :, trans_pos_ceil[:, 1], trans_pos_ceil[:, 0]]
m2_nw = mask2_offset[bi, :, trans_pos_floor[:, 1], trans_pos_floor[:, 0]]
m2_sw = mask2_offset[bi, :, trans_pos_ceil[:, 1], trans_pos_floor[:, 0]]
m2_ne = mask2_offset[bi, :, trans_pos_floor[:, 1], trans_pos_ceil[:, 0]]
m2_se = mask2_offset[bi, :, trans_pos_ceil[:, 1], trans_pos_ceil[:, 0]]
nr = weight_nw * f2_nw * m2_nw + weight_sw * f2_sw * m2_sw + \
weight_ne * f2_ne * m2_ne + weight_se * f2_se * m2_se
dr = weight_nw * m2_nw + weight_sw * m2_sw + weight_ne * m2_ne + weight_se * m2_se
zero_value = -1 if is_image else 0
zero_tensor = torch.tensor(zero_value, dtype=nr.dtype, device=nr.device)
warped_frame1 = torch.where(dr > 0, nr / dr, zero_tensor)
mask1 = (dr > 0).to(frame2)
# Convert to channel first
warped_frame1 = torch.moveaxis(warped_frame1, [0, 1, 2, 3], [0, 2, 3, 1])
mask1 = torch.moveaxis(mask1, [0, 1, 2, 3], [0, 2, 3, 1])
if is_image:
assert warped_frame1.min() >= -1.1 # Allow for rounding errors
assert warped_frame1.max() <= 1.1
warped_frame1 = torch.clamp(warped_frame1, min=-1, max=1)
return warped_frame1, mask1
@staticmethod
def create_grid(b, h, w):
x_1d = torch.arange(0, w)[None]
y_1d = torch.arange(0, h)[:, None]
x_2d = x_1d.repeat([h, 1])
y_2d = y_1d.repeat([1, w])
grid = torch.stack([x_2d, y_2d], dim=0)
batch_grid = grid[None].repeat([b, 1, 1, 1])
return batch_grid
# @staticmethod
# def read_image(path: Path) -> torch.Tensor:
# image = skimage.io.imread(path.as_posix())
# return image
# @staticmethod
# def read_depth(path: Path) -> torch.Tensor:
# if path.suffix == '.png':
# depth = skimage.io.imread(path.as_posix())
# elif path.suffix == '.npy':
# depth = numpy.load(path.as_posix())
# elif path.suffix == '.npz':
# with numpy.load(path.as_posix()) as depth_data:
# depth = depth_data['depth']
# elif path.suffix == '.exr':
# exr_file = OpenEXR.InputFile(path.as_posix())
# raw_bytes = exr_file.channel('B', Imath.PixelType(Imath.PixelType.FLOAT))
# depth_vector = numpy.frombuffer(raw_bytes, dtype=numpy.float32)
# height = exr_file.header()['displayWindow'].max.y + 1 - exr_file.header()['displayWindow'].min.y
# width = exr_file.header()['displayWindow'].max.x + 1 - exr_file.header()['displayWindow'].min.x
# depth = numpy.reshape(depth_vector, (height, width))
# else:
# raise RuntimeError(f'Unknown depth format: {path.suffix}')
# return depth
# @staticmethod
# def camera_intrinsic_transform(capture_width=1920, capture_height=1080, patch_start_point: tuple = (0, 0)):
# start_y, start_x = patch_start_point
# camera_intrinsics = numpy.eye(4)
# camera_intrinsics[0, 0] = 2100
# camera_intrinsics[0, 2] = capture_width / 2.0 - start_x
# camera_intrinsics[1, 1] = 2100
# camera_intrinsics[1, 2] = capture_height / 2.0 - start_y
# return camera_intrinsics
# @staticmethod
# def get_device(device: str):
# """
# Returns torch device object
# :param device: cpu/gpu0/gpu1
# :return:
# """
# if device == 'cpu':
# device = torch.device('cpu')
# elif device.startswith('gpu') and torch.cuda.is_available():
# gpu_num = int(device[3:])
# device = torch.device(f'cuda:{gpu_num}')
# else:
# device = torch.device('cpu')
# return device |