|
import streamlit as st
|
|
import random
|
|
import time
|
|
import os
|
|
from langchain_together import ChatTogether
|
|
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
from langchain_community.document_loaders import TextLoader
|
|
from langchain_core.prompts import ChatPromptTemplate
|
|
from langchain_community.vectorstores import FAISS
|
|
from langchain_core.output_parsers import StrOutputParser
|
|
from langchain_core.runnables import RunnablePassthrough
|
|
from langchain_together import TogetherEmbeddings
|
|
|
|
os.environ["TOGETHER_API_KEY"] = "6216ce36aadcb06c35436e7d6bbbc18b354d8140f6e805db485d70ecff4481d0"
|
|
|
|
|
|
loader = TextLoader("Resume_data.txt")
|
|
documents = loader.load()
|
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
|
docs = text_splitter.split_documents(documents)
|
|
vectorstore = FAISS.from_documents(docs,
|
|
TogetherEmbeddings(model="togethercomputer/m2-bert-80M-8k-retrieval")
|
|
)
|
|
|
|
retriever = vectorstore.as_retriever()
|
|
print("assigning model")
|
|
model = ChatTogether(
|
|
model="meta-llama/Llama-3-70b-chat-hf",
|
|
temperature=0.0,
|
|
max_tokens=500,)
|
|
|
|
|
|
|
|
template = """
|
|
{context}
|
|
Question: {question} [/INST]
|
|
"""
|
|
prompt = ChatPromptTemplate.from_template(template)
|
|
|
|
chain = (
|
|
{"context": retriever, "question": RunnablePassthrough()}
|
|
| prompt
|
|
| model
|
|
| StrOutputParser()
|
|
)
|
|
|
|
|
|
st.title("Simple chat")
|
|
|
|
|
|
if "messages" not in st.session_state:
|
|
st.session_state.messages = []
|
|
|
|
|
|
for message in st.session_state.messages:
|
|
with st.chat_message(message["role"]):
|
|
st.markdown(message["content"])
|
|
|
|
|
|
if prompt := st.chat_input("What is up?"):
|
|
|
|
with st.chat_message("user"):
|
|
st.markdown(prompt)
|
|
|
|
st.session_state.messages.append({"role": "user", "content": prompt})
|
|
|
|
|
|
|
|
def response_generator():
|
|
query = f"echo {prompt}"
|
|
|
|
|
|
|
|
|
|
return chain.invoke(query)
|
|
|
|
|
|
with st.chat_message("assistant"):
|
|
response = st.markdown(response_generator())
|
|
|
|
st.session_state.messages.append({"role": "assistant", "content": response}) |