import streamlit as st import random import time import os from langchain_together import ChatTogether from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_community.document_loaders import TextLoader from langchain_core.prompts import ChatPromptTemplate from langchain_community.vectorstores import FAISS from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain_together import TogetherEmbeddings os.environ["TOGETHER_API_KEY"] = "6216ce36aadcb06c35436e7d6bbbc18b354d8140f6e805db485d70ecff4481d0" #load loader = TextLoader("Resume_data.txt") documents = loader.load() # split it into chunks text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) vectorstore = FAISS.from_documents(docs, TogetherEmbeddings(model="togethercomputer/m2-bert-80M-8k-retrieval") ) retriever = vectorstore.as_retriever() print("assigning model") model = ChatTogether( model="meta-llama/Llama-3-70b-chat-hf", temperature=0.0, max_tokens=500,) # template = """[INST] answer from context only as if person is responding (use i instead of you in response). and always answer in short answer. # answer for asked question only, if he greets greet back. template = """ {context} Question: {question} [/INST] """ prompt = ChatPromptTemplate.from_template(template) chain = ( {"context": retriever, "question": RunnablePassthrough()} | prompt | model | StrOutputParser() ) st.title("Simple chat") # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Accept user input if prompt := st.chat_input("What is up?"): # Display user message in chat message container with st.chat_message("user"): st.markdown(prompt) # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt}) ############################################ # Streamed response emulator def response_generator(): query = f"echo {prompt}" # for m in chain.stream(query): # print(m) # yield m + " " # time.sleep(0.05) return chain.invoke(query) ########################################### # Display assistant response in chat message container with st.chat_message("assistant"): response = st.markdown(response_generator()) # Add assistant response to chat history st.session_state.messages.append({"role": "assistant", "content": response})