SynTalker / models /motionclip.py
robinwitch's picture
update
1da48bb
import torch
import torch.nn as nn
import numpy as np
import clip
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
# not used in the final model
x = x + self.pe[:x.shape[0], :]
return self.dropout(x)
class Encoder_TRANSFORMER(nn.Module):
def __init__(self, modeltype, njoints, nfeats, num_frames, num_classes, translation, pose_rep, glob, glob_rot,
latent_dim=256, ff_size=1024, num_layers=4, num_heads=4, dropout=0.1,
ablation=None, activation="gelu", **kargs):
super().__init__()
self.modeltype = modeltype
self.njoints = njoints
self.nfeats = nfeats
self.num_frames = num_frames
self.num_classes = num_classes
self.pose_rep = pose_rep
self.glob = glob
self.glob_rot = glob_rot
self.translation = translation
self.latent_dim = latent_dim
self.ff_size = ff_size
self.num_layers = num_layers
self.num_heads = num_heads
self.dropout = dropout
self.ablation = ablation
self.activation = activation
self.input_feats = self.njoints*self.nfeats
self.muQuery = nn.Parameter(torch.randn(1, self.latent_dim))
self.sigmaQuery = nn.Parameter(torch.randn(1, self.latent_dim))
self.skelEmbedding = nn.Linear(self.input_feats, self.latent_dim)
self.sequence_pos_encoder = PositionalEncoding(self.latent_dim, self.dropout)
seqTransEncoderLayer = nn.TransformerEncoderLayer(d_model=self.latent_dim,
nhead=self.num_heads,
dim_feedforward=self.ff_size,
dropout=self.dropout,
activation=self.activation)
self.seqTransEncoder = nn.TransformerEncoder(seqTransEncoderLayer,
num_layers=self.num_layers)
def forward(self, batch):
x, y, mask = batch["x"], batch["y"], batch["mask"]
bs, nfeats, nframes = x.shape
x = x.permute((2, 0, 1)).reshape(nframes, bs, nfeats)
# embedding of the skeleton
x = self.skelEmbedding(x)
# Blank Y to 0's , no classes in our model, only learned token
y = y - y
xseq = torch.cat((self.muQuery[y][None], self.sigmaQuery[y][None], x), axis=0)
# add positional encoding
xseq = self.sequence_pos_encoder(xseq)
# create a bigger mask, to allow attend to mu and sigma
muandsigmaMask = torch.ones((bs, 2), dtype=bool, device=x.device)
maskseq = torch.cat((muandsigmaMask, mask), axis=1)
final = self.seqTransEncoder(xseq, src_key_padding_mask=~maskseq)
mu = final[0]
logvar = final[1]
return {"mu": mu}
class Decoder_TRANSFORMER(nn.Module):
def __init__(self, modeltype, njoints, nfeats, num_frames, num_classes, translation, pose_rep, glob, glob_rot,
latent_dim=256, ff_size=1024, num_layers=4, num_heads=4, dropout=0.1, activation="gelu",
ablation=None, **kargs):
super().__init__()
self.modeltype = modeltype
self.njoints = njoints
self.nfeats = nfeats
self.num_frames = num_frames
self.num_classes = num_classes
self.pose_rep = pose_rep
self.glob = glob
self.glob_rot = glob_rot
self.translation = translation
self.latent_dim = latent_dim
self.ff_size = ff_size
self.num_layers = num_layers
self.num_heads = num_heads
self.dropout = dropout
self.ablation = ablation
self.activation = activation
self.input_feats = self.njoints*self.nfeats
# only for ablation / not used in the final model
if self.ablation == "zandtime":
self.ztimelinear = nn.Linear(self.latent_dim + self.num_classes, self.latent_dim)
self.actionBiases = nn.Parameter(torch.randn(1, self.latent_dim))
# only for ablation / not used in the final model
if self.ablation == "time_encoding":
self.sequence_pos_encoder = TimeEncoding(self.dropout)
else:
self.sequence_pos_encoder = PositionalEncoding(self.latent_dim, self.dropout)
seqTransDecoderLayer = nn.TransformerDecoderLayer(d_model=self.latent_dim,
nhead=self.num_heads,
dim_feedforward=self.ff_size,
dropout=self.dropout,
activation=activation)
self.seqTransDecoder = nn.TransformerDecoder(seqTransDecoderLayer,
num_layers=self.num_layers)
self.finallayer = nn.Linear(self.latent_dim, self.input_feats)
def forward(self, batch, use_text_emb=False):
z, y, mask, lengths = batch["z"], batch["y"], batch["mask"], batch["lengths"]
if use_text_emb:
z = batch["clip_text_emb"]
latent_dim = z.shape[1]
bs, nframes = mask.shape
njoints, nfeats = self.njoints, self.nfeats
# only for ablation / not used in the final model
if self.ablation == "zandtime":
yoh = F.one_hot(y, self.num_classes)
z = torch.cat((z, yoh), axis=1)
z = self.ztimelinear(z)
z = z[None] # sequence of size 1
else:
# only for ablation / not used in the final model
if self.ablation == "concat_bias":
# sequence of size 2
z = torch.stack((z, self.actionBiases[y]), axis=0)
else:
z = z[None] # sequence of size 1 #
timequeries = torch.zeros(nframes, bs, latent_dim, device=z.device)
# only for ablation / not used in the final model
if self.ablation == "time_encoding":
timequeries = self.sequence_pos_encoder(timequeries, mask, lengths)
else:
timequeries = self.sequence_pos_encoder(timequeries)
output = self.seqTransDecoder(tgt=timequeries, memory=z,
tgt_key_padding_mask=~mask)
output = self.finallayer(output).reshape(nframes, bs, njoints, nfeats)
# zero for padded area
output[~mask.T] = 0
output = output.permute(1, 2, 3, 0)
if use_text_emb:
batch["txt_output"] = output
else:
batch["output"] = output
return batch
class MOTIONCLIP(nn.Module):
def __init__(self, encoder, decoder, device, lambdas, latent_dim, outputxyz,
pose_rep, glob, glob_rot, translation, jointstype, vertstrans, clip_lambdas={}, **kwargs):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.outputxyz = outputxyz
self.lambdas = lambdas
self.clip_lambdas = clip_lambdas
self.latent_dim = latent_dim
self.pose_rep = pose_rep
self.glob = glob
self.glob_rot = glob_rot
self.device = device
self.translation = translation
self.jointstype = jointstype
self.vertstrans = vertstrans
self.clip_model = kwargs['clip_model']
self.clip_training = kwargs.get('clip_training', False)
if self.clip_training and self.clip_model:
self.clip_model.training = True
else:
if self.clip_model:
assert self.clip_model.training == False # make sure clip is frozen
def forward(self, batch):
# encode
batch.update(self.encoder(batch))
batch["z"] = batch["mu"]
# decode
batch.update(self.decoder(batch))
return batch
def get_gen_model(parameters, clip_model):
encoder = Encoder_TRANSFORMER(**parameters)
decoder = Decoder_TRANSFORMER(**parameters)
parameters["outputxyz"] = "rcxyz" in parameters["lambdas"]
return MOTIONCLIP(encoder, decoder, clip_model=clip_model, **parameters).to(parameters["device"])
def get_model(parameters):
# clip_model, preprocess = clip.load("ViT-B/32", device=device) # Must set jit=False for training
clip_model, clip_preprocess = clip.load("ViT-B/32", device=parameters['device'], jit=False) # Must set jit=False for training
clip.model.convert_weights(clip_model) # Actually this line is unnecessary since clip by default already on float16
for domain in parameters.get('clip_training', '').split('_'):
clip_num_layers = parameters.get('clip_layers', 12)
if domain == 'text':
clip_model.initialize_parameters()
clip_model.transformer.resblocks = clip_model.transformer.resblocks[:clip_num_layers]
if domain == 'image':
clip_model.initialize_parameters()
clip_model.visual.transformer = clip_model.transformer.resblocks[:clip_num_layers]
# NO Clip Training ,Freeze CLIP weights
if parameters.get('clip_training', '') == '':
clip_model.eval()
for p in clip_model.parameters():
p.requires_grad = False
model = get_gen_model(parameters, clip_model)
return model