File size: 10,105 Bytes
1da48bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import torch
import torch.nn as nn
import numpy as np
import clip

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        
        self.register_buffer('pe', pe)

    def forward(self, x):
        # not used in the final model
        x = x + self.pe[:x.shape[0], :]
        return self.dropout(x)


class Encoder_TRANSFORMER(nn.Module):
    def __init__(self, modeltype, njoints, nfeats, num_frames, num_classes, translation, pose_rep, glob, glob_rot,
                 latent_dim=256, ff_size=1024, num_layers=4, num_heads=4, dropout=0.1,
                 ablation=None, activation="gelu", **kargs):
        super().__init__()
        
        self.modeltype = modeltype
        self.njoints = njoints
        self.nfeats = nfeats
        self.num_frames = num_frames
        self.num_classes = num_classes
        
        self.pose_rep = pose_rep
        self.glob = glob
        self.glob_rot = glob_rot
        self.translation = translation
        
        self.latent_dim = latent_dim
        
        self.ff_size = ff_size
        self.num_layers = num_layers
        self.num_heads = num_heads
        self.dropout = dropout

        self.ablation = ablation
        self.activation = activation
        
        self.input_feats = self.njoints*self.nfeats

        self.muQuery = nn.Parameter(torch.randn(1, self.latent_dim))
        self.sigmaQuery = nn.Parameter(torch.randn(1, self.latent_dim))
        self.skelEmbedding = nn.Linear(self.input_feats, self.latent_dim)

        self.sequence_pos_encoder = PositionalEncoding(self.latent_dim, self.dropout)

        seqTransEncoderLayer = nn.TransformerEncoderLayer(d_model=self.latent_dim,
                                                          nhead=self.num_heads,
                                                          dim_feedforward=self.ff_size,
                                                          dropout=self.dropout,
                                                          activation=self.activation)
        self.seqTransEncoder = nn.TransformerEncoder(seqTransEncoderLayer,
                                                     num_layers=self.num_layers)

    def forward(self, batch):
        x, y, mask = batch["x"], batch["y"], batch["mask"]
        bs, nfeats, nframes = x.shape
        x = x.permute((2, 0, 1)).reshape(nframes, bs, nfeats)

        # embedding of the skeleton
        x = self.skelEmbedding(x)

        # Blank Y to 0's , no classes in our model, only learned token
        y = y - y
        xseq = torch.cat((self.muQuery[y][None], self.sigmaQuery[y][None], x), axis=0)

        # add positional encoding
        xseq = self.sequence_pos_encoder(xseq)

        # create a bigger mask, to allow attend to mu and sigma
        muandsigmaMask = torch.ones((bs, 2), dtype=bool, device=x.device)

        maskseq = torch.cat((muandsigmaMask, mask), axis=1)

        final = self.seqTransEncoder(xseq, src_key_padding_mask=~maskseq)
        mu = final[0]
        logvar = final[1]

        return {"mu": mu}


class Decoder_TRANSFORMER(nn.Module):
    def __init__(self, modeltype, njoints, nfeats, num_frames, num_classes, translation, pose_rep, glob, glob_rot,
                 latent_dim=256, ff_size=1024, num_layers=4, num_heads=4, dropout=0.1, activation="gelu",
                 ablation=None, **kargs):
        super().__init__()

        self.modeltype = modeltype
        self.njoints = njoints
        self.nfeats = nfeats
        self.num_frames = num_frames
        self.num_classes = num_classes
        
        self.pose_rep = pose_rep
        self.glob = glob
        self.glob_rot = glob_rot
        self.translation = translation
        
        self.latent_dim = latent_dim
        
        self.ff_size = ff_size
        self.num_layers = num_layers
        self.num_heads = num_heads
        self.dropout = dropout

        self.ablation = ablation

        self.activation = activation
                
        self.input_feats = self.njoints*self.nfeats

        # only for ablation / not used in the final model
        if self.ablation == "zandtime":
            self.ztimelinear = nn.Linear(self.latent_dim + self.num_classes, self.latent_dim)

        self.actionBiases = nn.Parameter(torch.randn(1, self.latent_dim))

        # only for ablation / not used in the final model
        if self.ablation == "time_encoding":
            self.sequence_pos_encoder = TimeEncoding(self.dropout)
        else:
            self.sequence_pos_encoder = PositionalEncoding(self.latent_dim, self.dropout)
        
        seqTransDecoderLayer = nn.TransformerDecoderLayer(d_model=self.latent_dim,
                                                          nhead=self.num_heads,
                                                          dim_feedforward=self.ff_size,
                                                          dropout=self.dropout,
                                                          activation=activation)
        self.seqTransDecoder = nn.TransformerDecoder(seqTransDecoderLayer,
                                                     num_layers=self.num_layers)
        
        self.finallayer = nn.Linear(self.latent_dim, self.input_feats)
        
    def forward(self, batch, use_text_emb=False):
        z, y, mask, lengths = batch["z"], batch["y"], batch["mask"], batch["lengths"]
        if use_text_emb:
            z = batch["clip_text_emb"]
        latent_dim = z.shape[1]
        bs, nframes = mask.shape
        njoints, nfeats = self.njoints, self.nfeats

        # only for ablation / not used in the final model
        if self.ablation == "zandtime":
            yoh = F.one_hot(y, self.num_classes)
            z = torch.cat((z, yoh), axis=1)
            z = self.ztimelinear(z)
            z = z[None]  # sequence of size 1
        else:
            # only for ablation / not used in the final model
            if self.ablation == "concat_bias":
                # sequence of size 2
                z = torch.stack((z, self.actionBiases[y]), axis=0)
            else:
                z = z[None]  # sequence of size 1  #

        timequeries = torch.zeros(nframes, bs, latent_dim, device=z.device)
        
        # only for ablation / not used in the final model
        if self.ablation == "time_encoding":
            timequeries = self.sequence_pos_encoder(timequeries, mask, lengths)
        else:
            timequeries = self.sequence_pos_encoder(timequeries)
        
        output = self.seqTransDecoder(tgt=timequeries, memory=z,
                                      tgt_key_padding_mask=~mask)
        
        output = self.finallayer(output).reshape(nframes, bs, njoints, nfeats)
        
        # zero for padded area
        output[~mask.T] = 0
        output = output.permute(1, 2, 3, 0)

        if use_text_emb:
            batch["txt_output"] = output
        else:
            batch["output"] = output
        return batch



class MOTIONCLIP(nn.Module):
    def __init__(self, encoder, decoder, device, lambdas, latent_dim, outputxyz,
                 pose_rep, glob, glob_rot, translation, jointstype, vertstrans, clip_lambdas={}, **kwargs):
        super().__init__()

        self.encoder = encoder
        self.decoder = decoder

        self.outputxyz = outputxyz

        self.lambdas = lambdas
        self.clip_lambdas = clip_lambdas

        self.latent_dim = latent_dim
        self.pose_rep = pose_rep
        self.glob = glob
        self.glob_rot = glob_rot
        self.device = device
        self.translation = translation
        self.jointstype = jointstype
        self.vertstrans = vertstrans

        self.clip_model = kwargs['clip_model']
        self.clip_training = kwargs.get('clip_training', False)
        if self.clip_training and self.clip_model:
            self.clip_model.training = True
        else:
            if self.clip_model:
                assert self.clip_model.training == False  # make sure clip is frozen


    def forward(self, batch):

        # encode
        batch.update(self.encoder(batch))
        batch["z"] = batch["mu"]
        # decode
        batch.update(self.decoder(batch))
        return batch



        
def get_gen_model(parameters, clip_model):
    encoder = Encoder_TRANSFORMER(**parameters)
    decoder = Decoder_TRANSFORMER(**parameters)
    parameters["outputxyz"] = "rcxyz" in parameters["lambdas"]
    return MOTIONCLIP(encoder, decoder, clip_model=clip_model, **parameters).to(parameters["device"])


def get_model(parameters):

    # clip_model, preprocess = clip.load("ViT-B/32", device=device)  # Must set jit=False for training
    clip_model, clip_preprocess = clip.load("ViT-B/32", device=parameters['device'], jit=False)  # Must set jit=False for training
    clip.model.convert_weights(clip_model)  # Actually this line is unnecessary since clip by default already on float16

    for domain in parameters.get('clip_training', '').split('_'):
        clip_num_layers = parameters.get('clip_layers', 12)
        if domain == 'text':
            clip_model.initialize_parameters()
            clip_model.transformer.resblocks = clip_model.transformer.resblocks[:clip_num_layers]
        if domain == 'image':
            clip_model.initialize_parameters()
            clip_model.visual.transformer = clip_model.transformer.resblocks[:clip_num_layers]

    # NO Clip Training ,Freeze CLIP weights
    if parameters.get('clip_training', '') == '':
        clip_model.eval()
        for p in clip_model.parameters():
            p.requires_grad = False

    model = get_gen_model(parameters, clip_model)
    return model