import gradio as gr | |
import json | |
from langchain.llms import GooglePalm | |
api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M" | |
llm = GooglePalm(google_api_key = api_key, temperature=0.7) | |
from langchain.document_loaders.csv_loader import CSVLoader | |
loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt') | |
data = loader.load() | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
# instructor_embeddings = HuggingFaceEmbeddings(model_name = "Alibaba-NLP/gte-Qwen2-7B-instruct") # best model <-- but too big | |
instructor_embeddings = HuggingFaceEmbeddings(model_name = "BAAI/bge-m3") | |
# instructor_embeddings = HuggingFaceEmbeddings() | |
vectordb = FAISS.from_documents(documents = data, embedding = instructor_embeddings) | |
# e = embeddings_model.embed_query("What is your refund policy") | |
retriever = vectordb.as_retriever() | |
from langchain.prompts import PromptTemplate | |
prompt_template = """Given the following context and a question, generate an answer based on the context only. | |
In the answer try to provide as much text as possible from "response" section in the source document context without making much changes. | |
If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!" | |
If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer. | |
CONTEXT: {context} | |
QUESTION: {question}""" | |
PROMPT = PromptTemplate( | |
template = prompt_template, input_variables = ["context", "question"] | |
) | |
from langchain.chains import RetrievalQA | |
chain = RetrievalQA.from_chain_type(llm = llm, | |
chain_type="stuff", | |
retriever=retriever, | |
input_key="query", | |
return_source_documents=True, | |
chain_type_kwargs = {"prompt": PROMPT}) | |
# Load your LLM model and necessary components | |
# Assume `chain` is a function defined in your notebook that takes a query and returns the output as shown | |
# For this example, we'll assume the model and chain function are already available | |
def chatbot(query): | |
response = chain(query) | |
# Extract the 'result' part of the response | |
result = response.get('result', 'Sorry, I could not find an answer.') | |
return result | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=chatbot, # Function to call | |
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your question here..."), # Input type | |
outputs="text", # Output type | |
title="Hugging Face LLM Chatbot", | |
description="Ask any question related to the documents and get an answer from the LLM model.", | |
) | |
# Launch the interface | |
iface.launch() | |
# Save this file as app.py and push it to your Hugging Face Space repository | |
# import gradio as gr | |
# def greet(name, intensity): | |
# return "Hello, " + name + "!" * int(intensity) | |
# demo = gr.Interface( | |
# fn=greet, | |
# inputs=["text", "slider"], | |
# outputs=["text"], | |
# ) | |
# demo.launch() | |
# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# """ | |
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
# """ | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
# """ | |
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# """ | |
# demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() |