File size: 4,895 Bytes
8bf58fb
762e024
 
1e07071
762e024
1e07071
762e024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bf58fb
 
762e024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e07071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bf58fb
1e07071
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import gradio as gr
import json
from langchain.llms import GooglePalm

api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"

llm = GooglePalm(google_api_key = api_key, temperature=0.7)

from langchain.document_loaders.csv_loader import CSVLoader

loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
data = loader.load()

from langchain_huggingface import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS

# instructor_embeddings = HuggingFaceEmbeddings(model_name = "Alibaba-NLP/gte-Qwen2-7B-instruct") # best model <-- but too big
instructor_embeddings = HuggingFaceEmbeddings(model_name = "BAAI/bge-m3")
# instructor_embeddings = HuggingFaceEmbeddings()

vectordb = FAISS.from_documents(documents = data, embedding = instructor_embeddings)

# e = embeddings_model.embed_query("What is your refund policy")

retriever = vectordb.as_retriever()

from langchain.prompts import PromptTemplate

prompt_template = """Given the following context and a question, generate an answer based on the context only.

In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer.

CONTEXT: {context}

QUESTION: {question}"""

PROMPT = PromptTemplate(
    template = prompt_template, input_variables = ["context", "question"]
)

from langchain.chains import RetrievalQA

chain = RetrievalQA.from_chain_type(llm = llm,
            chain_type="stuff",
            retriever=retriever,
            input_key="query",
            return_source_documents=True,
            chain_type_kwargs = {"prompt": PROMPT})

# Load your LLM model and necessary components
# Assume `chain` is a function defined in your notebook that takes a query and returns the output as shown
# For this example, we'll assume the model and chain function are already available

def chatbot(query):
    response = chain(query)
    # Extract the 'result' part of the response
    result = response.get('result', 'Sorry, I could not find an answer.')
    return result

# Define the Gradio interface
iface = gr.Interface(
    fn=chatbot,  # Function to call
    inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your question here..."),  # Input type
    outputs="text",  # Output type
    title="Hugging Face LLM Chatbot",
    description="Ask any question related to the documents and get an answer from the LLM model.",
)

# Launch the interface
iface.launch()

# Save this file as app.py and push it to your Hugging Face Space repository

# import gradio as gr

# def greet(name, intensity):
#     return "Hello, " + name + "!" * int(intensity)

# demo = gr.Interface(
#     fn=greet,
#     inputs=["text", "slider"],
#     outputs=["text"],
# )

# demo.launch()


# import gradio as gr
# from huggingface_hub import InferenceClient

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


# def respond(
#     message,
#     history: list[tuple[str, str]],
#     system_message,
#     max_tokens,
#     temperature,
#     top_p,
# ):
#     messages = [{"role": "system", "content": system_message}]

#     for val in history:
#         if val[0]:
#             messages.append({"role": "user", "content": val[0]})
#         if val[1]:
#             messages.append({"role": "assistant", "content": val[1]})

#     messages.append({"role": "user", "content": message})

#     response = ""

#     for message in client.chat_completion(
#         messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         token = message.choices[0].delta.content

#         response += token
#         yield response

# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
#         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(
#             minimum=0.1,
#             maximum=1.0,
#             value=0.95,
#             step=0.05,
#             label="Top-p (nucleus sampling)",
#         ),
#     ],
# )


# if __name__ == "__main__":
#     demo.launch()