meta-llama / app.py
richardkimsm89's picture
Update app.py
e015f05 verified
raw
history blame
1.8 kB
# Inference
import gradio as gr
from huggingface_hub import InferenceClient
model = "meta-llama/Llama-3.2-3B-Instruct"
client = InferenceClient(model)
def fn(
prompt,
#history: list[tuple[str, str]],
history: list,
#system_prompt,
max_tokens,
temperature,
top_p,
):
#messages = [{"role": "system", "content": system_prompt}]
#history.append({"role": "user", "content": prompt})
messages = [{"role": "user", "content": prompt}]
history.append(messages)
#for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
#messages.append({"role": "user", "content": prompt})
stream = client.chat.completions.create(
model = model,
#messages = messages,
messages = history,
max_tokens = max_tokens,
temperature = temperature,
top_p = top_p,
stream = True
)
#response = ""
#for chunk in stream:
# response += chunk.choices[0].delta.content
#return response
chunks = []
for chunk in stream:
chunks.append(chunk.choices[0].delta.content or "")
yield "".join(chunks)
app = gr.ChatInterface(
fn = fn,
type = "messages",
additional_inputs = [
#gr.Textbox(value="You are a helpful assistant.", label="System Prompt"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
],
title = "Meta Llama",
description = model,
)
if __name__ == "__main__":
app.launch()