Spaces:
Sleeping
Sleeping
# Inference | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
model = "meta-llama/Llama-3.2-3B-Instruct" | |
client = InferenceClient(model) | |
def fn( | |
prompt, | |
#history: list[tuple[str, str]], | |
history: list, | |
#system_prompt, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
#messages = [{"role": "system", "content": system_prompt}] | |
#history.append({"role": "user", "content": prompt}) | |
messages = [{"role": "user", "content": prompt}] | |
history.append(messages) | |
#for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
#messages.append({"role": "user", "content": prompt}) | |
stream = client.chat.completions.create( | |
model = model, | |
#messages = messages, | |
messages = history, | |
max_tokens = max_tokens, | |
temperature = temperature, | |
top_p = top_p, | |
stream = True | |
) | |
#response = "" | |
#for chunk in stream: | |
# response += chunk.choices[0].delta.content | |
#return response | |
chunks = [] | |
for chunk in stream: | |
chunks.append(chunk.choices[0].delta.content or "") | |
yield "".join(chunks) | |
app = gr.ChatInterface( | |
fn = fn, | |
type = "messages", | |
additional_inputs = [ | |
#gr.Textbox(value="You are a helpful assistant.", label="System Prompt"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"), | |
], | |
title = "Meta Llama", | |
description = model, | |
) | |
if __name__ == "__main__": | |
app.launch() |