# Inference import gradio as gr from huggingface_hub import InferenceClient model = "meta-llama/Llama-3.2-3B-Instruct" client = InferenceClient(model) def fn( prompt, #history: list[tuple[str, str]], history: list, #system_prompt, max_tokens, temperature, top_p, ): #messages = [{"role": "system", "content": system_prompt}] #history.append({"role": "user", "content": prompt}) messages = [{"role": "user", "content": prompt}] history.append(messages) #for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) #messages.append({"role": "user", "content": prompt}) stream = client.chat.completions.create( model = model, #messages = messages, messages = history, max_tokens = max_tokens, temperature = temperature, top_p = top_p, stream = True ) #response = "" #for chunk in stream: # response += chunk.choices[0].delta.content #return response chunks = [] for chunk in stream: chunks.append(chunk.choices[0].delta.content or "") yield "".join(chunks) app = gr.ChatInterface( fn = fn, type = "messages", additional_inputs = [ #gr.Textbox(value="You are a helpful assistant.", label="System Prompt"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"), ], title = "Meta Llama", description = model, ) if __name__ == "__main__": app.launch()