Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
client = InferenceClient() | |
# Llama 3 - Text | |
model_llama_3_text = "meta-llama/Llama-3.2-3B-Instruct" | |
def fn_llama_3_text( | |
prompt, | |
history, | |
system_prompt, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# With System Prompt | |
messages = [{"role": "system", "content": [{"type": "text", "text": system_prompt}]}] | |
history.append(messages[0]) | |
messages.append({"role": "user", "content": [{"type": "text", "text": prompt}]}) | |
history.append(messages[1]) | |
stream = client.chat.completions.create( | |
model = model_llama_3_text, | |
messages = history, | |
max_tokens = max_tokens, | |
temperature = temperature, | |
top_p = top_p, | |
stream = True, | |
) | |
chunks = [] | |
for chunk in stream: | |
chunks.append(chunk.choices[0].delta.content or "") | |
yield "".join(chunks) | |
app_llama_3_text = gr.ChatInterface( | |
fn = fn_llama_3_text, | |
type = "messages", | |
additional_inputs = [ | |
gr.Textbox(value="You are a helpful assistant.", label="System Prompt"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"), | |
], | |
title = "Meta Llama 3", | |
description = model_llama_3_text, | |
) | |
# Llama 3 - Vision | |
model_llama_3_vision = "meta-llama/Llama-3.2-11B-Vision-Instruct" | |
def fn_llama_3_vision( | |
prompt, | |
image_url, | |
#system_prompt, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Without System Prompt | |
messages = [{"role": "user", "content": [{"type": "text", "text": prompt}]}] | |
if image_url: | |
messages[0]["content"].append({"type": "image_url", "image_url": {"url": image_url}}) | |
stream = client.chat.completions.create( | |
model = model_llama_3_vision, | |
messages = messages, | |
max_tokens = max_tokens, | |
temperature = temperature, | |
top_p = top_p, | |
stream = True, | |
) | |
chunks = [] | |
for chunk in stream: | |
chunks.append(chunk.choices[0].delta.content or "") | |
yield "".join(chunks) | |
app_llama_3_vision = gr.Interface( | |
fn = fn_llama_3_vision, | |
inputs = [ | |
gr.Textbox(label="Prompt"), | |
gr.Textbox(label="Image URL") | |
], | |
outputs = [ | |
gr.Textbox(label="Output") | |
], | |
additional_inputs = [ | |
#gr.Textbox(value="You are a helpful assistant.", label="System Prompt"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"), | |
], | |
title = "Meta Llama 3", | |
description = model_llama_3_vision, | |
) | |
app = gr.TabbedInterface( | |
[app_llama_3_text, app_llama_3_vision], | |
["Llama 3 - Text", "Llama 3 - Vision"] | |
).launch() |