Spaces:
Sleeping
Sleeping
File size: 3,023 Bytes
dfddde4 de1b844 e174db6 0329404 de1b844 7d5b9b1 c6925d2 ae3d933 8ae4bcc de1b844 60d4859 e174db6 7d5b9b1 8ae4bcc 90b6f18 60d4859 0715c3e 60d4859 28944a9 7d5b9b1 2619751 de1b844 7524b2b 28944a9 60d4859 d7c4ce9 28944a9 d7c4ce9 dfddde4 dbd34c4 7d5b9b1 94f6279 de1b844 8ae4bcc de1b844 7d5b9b1 de1b844 7d5b9b1 60d4859 7d5b9b1 60d4859 7d5b9b1 60d4859 7524b2b 60d4859 7d5b9b1 60d4859 7d5b9b1 60d4859 7d5b9b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import gradio as gr
from huggingface_hub import InferenceClient
client = InferenceClient()
# Llama 3 - Text
model_llama_3_text = "meta-llama/Llama-3.2-3B-Instruct"
def fn_llama_3_text(
prompt,
history,
system_prompt,
max_tokens,
temperature,
top_p,
):
# With System Prompt
messages = [{"role": "system", "content": [{"type": "text", "text": system_prompt}]}]
history.append(messages[0])
messages.append({"role": "user", "content": [{"type": "text", "text": prompt}]})
history.append(messages[1])
stream = client.chat.completions.create(
model = model_llama_3_text,
messages = history,
max_tokens = max_tokens,
temperature = temperature,
top_p = top_p,
stream = True,
)
chunks = []
for chunk in stream:
chunks.append(chunk.choices[0].delta.content or "")
yield "".join(chunks)
app_llama_3_text = gr.ChatInterface(
fn = fn_llama_3_text,
type = "messages",
additional_inputs = [
gr.Textbox(value="You are a helpful assistant.", label="System Prompt"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
],
title = "Meta Llama 3",
description = model_llama_3_text,
)
# Llama 3 - Vision
model_llama_3_vision = "meta-llama/Llama-3.2-11B-Vision-Instruct"
def fn_llama_3_vision(
prompt,
image_url,
#system_prompt,
max_tokens,
temperature,
top_p,
):
# Without System Prompt
messages = [{"role": "user", "content": [{"type": "text", "text": prompt}]}]
if image_url:
messages[0]["content"].append({"type": "image_url", "image_url": {"url": image_url}})
stream = client.chat.completions.create(
model = model_llama_3_vision,
messages = messages,
max_tokens = max_tokens,
temperature = temperature,
top_p = top_p,
stream = True,
)
chunks = []
for chunk in stream:
chunks.append(chunk.choices[0].delta.content or "")
yield "".join(chunks)
app_llama_3_vision = gr.Interface(
fn = fn_llama_3_vision,
inputs = [
gr.Textbox(label="Prompt"),
gr.Textbox(label="Image URL")
],
outputs = [
gr.Textbox(label="Output")
],
additional_inputs = [
#gr.Textbox(value="You are a helpful assistant.", label="System Prompt"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
],
title = "Meta Llama 3",
description = model_llama_3_vision,
)
app = gr.TabbedInterface(
[app_llama_3_text, app_llama_3_vision],
["Llama 3 - Text", "Llama 3 - Vision"]
).launch() |