Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
# Inference
|
5 |
-
|
6 |
-
#model_text = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
|
7 |
-
model_text = "meta-llama/Llama-3.2-3B-Instruct"
|
8 |
-
model_vision = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
9 |
-
|
10 |
client = InferenceClient()
|
11 |
|
12 |
-
|
|
|
|
|
|
|
13 |
prompt,
|
14 |
history,
|
15 |
system_prompt,
|
@@ -18,14 +15,14 @@ def fn_text(
|
|
18 |
top_p,
|
19 |
):
|
20 |
|
|
|
21 |
messages = [{"role": "system", "content": [{"type": "text", "text": system_prompt}]}]
|
22 |
history.append(messages[0])
|
23 |
-
|
24 |
messages.append({"role": "user", "content": [{"type": "text", "text": prompt}]})
|
25 |
history.append(messages[1])
|
26 |
|
27 |
stream = client.chat.completions.create(
|
28 |
-
model =
|
29 |
messages = history,
|
30 |
max_tokens = max_tokens,
|
31 |
temperature = temperature,
|
@@ -39,7 +36,7 @@ def fn_text(
|
|
39 |
yield "".join(chunks)
|
40 |
|
41 |
app_text = gr.ChatInterface(
|
42 |
-
fn =
|
43 |
type = "messages",
|
44 |
additional_inputs = [
|
45 |
gr.Textbox(value="You are a helpful assistant.", label="System Prompt"),
|
@@ -47,11 +44,14 @@ app_text = gr.ChatInterface(
|
|
47 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
48 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
|
49 |
],
|
50 |
-
title = "Meta Llama",
|
51 |
-
description =
|
52 |
)
|
53 |
|
54 |
-
|
|
|
|
|
|
|
55 |
prompt,
|
56 |
image_url,
|
57 |
#system_prompt,
|
@@ -59,13 +59,14 @@ def fn_vision(
|
|
59 |
temperature,
|
60 |
top_p,
|
61 |
):
|
62 |
-
messages = [{"role": "user", "content": [{"type": "text", "text": prompt}]}]
|
63 |
|
|
|
|
|
64 |
if image_url:
|
65 |
messages[0]["content"].append({"type": "image_url", "image_url": {"url": image_url}})
|
66 |
|
67 |
stream = client.chat.completions.create(
|
68 |
-
model =
|
69 |
messages = messages,
|
70 |
max_tokens = max_tokens,
|
71 |
temperature = temperature,
|
@@ -78,8 +79,8 @@ def fn_vision(
|
|
78 |
chunks.append(chunk.choices[0].delta.content or "")
|
79 |
yield "".join(chunks)
|
80 |
|
81 |
-
|
82 |
-
fn =
|
83 |
inputs = [
|
84 |
gr.Textbox(label="Prompt"),
|
85 |
gr.Textbox(label="Image URL")
|
@@ -93,14 +94,11 @@ app_vision = gr.Interface(
|
|
93 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
94 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
|
95 |
],
|
96 |
-
title = "Meta Llama",
|
97 |
-
description =
|
98 |
)
|
99 |
|
100 |
app = gr.TabbedInterface(
|
101 |
-
[
|
102 |
-
["Text", "Vision"]
|
103 |
-
).launch()
|
104 |
-
|
105 |
-
#if __name__ == "__main__":
|
106 |
-
# app.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
client = InferenceClient()
|
5 |
|
6 |
+
# Llama 3 - Text
|
7 |
+
model_llama_3_text = "meta-llama/Llama-3.2-3B-Instruct"
|
8 |
+
|
9 |
+
def fn_llama_3_text(
|
10 |
prompt,
|
11 |
history,
|
12 |
system_prompt,
|
|
|
15 |
top_p,
|
16 |
):
|
17 |
|
18 |
+
# With System Prompt
|
19 |
messages = [{"role": "system", "content": [{"type": "text", "text": system_prompt}]}]
|
20 |
history.append(messages[0])
|
|
|
21 |
messages.append({"role": "user", "content": [{"type": "text", "text": prompt}]})
|
22 |
history.append(messages[1])
|
23 |
|
24 |
stream = client.chat.completions.create(
|
25 |
+
model = model_llama_3_text,
|
26 |
messages = history,
|
27 |
max_tokens = max_tokens,
|
28 |
temperature = temperature,
|
|
|
36 |
yield "".join(chunks)
|
37 |
|
38 |
app_text = gr.ChatInterface(
|
39 |
+
fn = fn_llama_3_text,
|
40 |
type = "messages",
|
41 |
additional_inputs = [
|
42 |
gr.Textbox(value="You are a helpful assistant.", label="System Prompt"),
|
|
|
44 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
45 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
|
46 |
],
|
47 |
+
title = "Meta Llama 3",
|
48 |
+
description = model_llama_3_text,
|
49 |
)
|
50 |
|
51 |
+
# Llama 3 - Vision
|
52 |
+
model_llama_3_vision = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
53 |
+
|
54 |
+
def fn_llama_3_vision(
|
55 |
prompt,
|
56 |
image_url,
|
57 |
#system_prompt,
|
|
|
59 |
temperature,
|
60 |
top_p,
|
61 |
):
|
|
|
62 |
|
63 |
+
# Without System Prompt
|
64 |
+
messages = [{"role": "user", "content": [{"type": "text", "text": prompt}]}]
|
65 |
if image_url:
|
66 |
messages[0]["content"].append({"type": "image_url", "image_url": {"url": image_url}})
|
67 |
|
68 |
stream = client.chat.completions.create(
|
69 |
+
model = model_llama_3_vision,
|
70 |
messages = messages,
|
71 |
max_tokens = max_tokens,
|
72 |
temperature = temperature,
|
|
|
79 |
chunks.append(chunk.choices[0].delta.content or "")
|
80 |
yield "".join(chunks)
|
81 |
|
82 |
+
app_llama_3_vision = gr.Interface(
|
83 |
+
fn = fn_llama_3_vision,
|
84 |
inputs = [
|
85 |
gr.Textbox(label="Prompt"),
|
86 |
gr.Textbox(label="Image URL")
|
|
|
94 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
95 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
|
96 |
],
|
97 |
+
title = "Meta Llama 3",
|
98 |
+
description = model_llama_3_vision,
|
99 |
)
|
100 |
|
101 |
app = gr.TabbedInterface(
|
102 |
+
[app_llama_3_text, app_llama_3_vision],
|
103 |
+
["Llama 3 - Text", "Llama 3 - Vision"]
|
104 |
+
).launch()
|
|
|
|
|
|