|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import re
|
|
from copy import deepcopy
|
|
from io import BytesIO
|
|
from timeit import default_timer as timer
|
|
from nltk import word_tokenize
|
|
from openpyxl import load_workbook
|
|
from rag.nlp import is_english, random_choices, find_codec, qbullets_category, add_positions, has_qbullet
|
|
from rag.nlp import rag_tokenizer, tokenize_table
|
|
from rag.settings import cron_logger
|
|
from deepdoc.parser import PdfParser, ExcelParser
|
|
class Excel(ExcelParser):
|
|
def __call__(self, fnm, binary=None, callback=None):
|
|
if not binary:
|
|
wb = load_workbook(fnm)
|
|
else:
|
|
wb = load_workbook(BytesIO(binary))
|
|
total = 0
|
|
for sheetname in wb.sheetnames:
|
|
total += len(list(wb[sheetname].rows))
|
|
|
|
res, fails = [], []
|
|
for sheetname in wb.sheetnames:
|
|
ws = wb[sheetname]
|
|
rows = list(ws.rows)
|
|
for i, r in enumerate(rows):
|
|
q, a = "", ""
|
|
for cell in r:
|
|
if not cell.value:
|
|
continue
|
|
if not q:
|
|
q = str(cell.value)
|
|
elif not a:
|
|
a = str(cell.value)
|
|
else:
|
|
break
|
|
if q and a:
|
|
res.append((q, a))
|
|
else:
|
|
fails.append(str(i + 1))
|
|
if len(res) % 999 == 0:
|
|
callback(len(res) *
|
|
0.6 /
|
|
total, ("Extract Q&A: {}".format(len(res)) +
|
|
(f"{len(fails)} failure, line: %s..." %
|
|
(",".join(fails[:3])) if fails else "")))
|
|
|
|
callback(0.6, ("Extract Q&A: {}. ".format(len(res)) + (
|
|
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
|
|
self.is_english = is_english(
|
|
[rmPrefix(q) for q, _ in random_choices(res, k=30) if len(q) > 1])
|
|
return res
|
|
|
|
class Pdf(PdfParser):
|
|
def __call__(self, filename, binary=None, from_page=0,
|
|
to_page=100000, zoomin=3, callback=None):
|
|
start = timer()
|
|
callback(msg="OCR is running...")
|
|
self.__images__(
|
|
filename if not binary else binary,
|
|
zoomin,
|
|
from_page,
|
|
to_page,
|
|
callback
|
|
)
|
|
callback(msg="OCR finished")
|
|
cron_logger.info("OCR({}~{}): {}".format(from_page, to_page, timer() - start))
|
|
start = timer()
|
|
self._layouts_rec(zoomin, drop=False)
|
|
callback(0.63, "Layout analysis finished.")
|
|
self._table_transformer_job(zoomin)
|
|
callback(0.65, "Table analysis finished.")
|
|
self._text_merge()
|
|
callback(0.67, "Text merging finished")
|
|
tbls = self._extract_table_figure(True, zoomin, True, True)
|
|
|
|
|
|
|
|
cron_logger.info("layouts: {}".format(timer() - start))
|
|
sections = [b["text"] for b in self.boxes]
|
|
bull_x0_list = []
|
|
q_bull, reg = qbullets_category(sections)
|
|
if q_bull == -1:
|
|
raise ValueError("Unable to recognize Q&A structure.")
|
|
qai_list = []
|
|
last_q, last_a, last_tag = '', '', ''
|
|
last_index = -1
|
|
last_box = {'text':''}
|
|
last_bull = None
|
|
for box in self.boxes:
|
|
section, line_tag = box['text'], self._line_tag(box, zoomin)
|
|
has_bull, index = has_qbullet(reg, box, last_box, last_index, last_bull, bull_x0_list)
|
|
last_box, last_index, last_bull = box, index, has_bull
|
|
if not has_bull:
|
|
if not last_q:
|
|
continue
|
|
else:
|
|
last_a = f'{last_a}{section}'
|
|
last_tag = f'{last_tag}{line_tag}'
|
|
else:
|
|
if last_q:
|
|
qai_list.append((last_q, last_a, *self.crop(last_tag, need_position=True)))
|
|
last_q, last_a, last_tag = '', '', ''
|
|
last_q = has_bull.group()
|
|
_, end = has_bull.span()
|
|
last_a = section[end:]
|
|
last_tag = line_tag
|
|
if last_q:
|
|
qai_list.append((last_q, last_a, *self.crop(last_tag, need_position=True)))
|
|
return qai_list, tbls
|
|
|
|
def rmPrefix(txt):
|
|
return re.sub(
|
|
r"^(问题|答案|回答|user|assistant|Q|A|Question|Answer|问|答)[\t:: ]+", "", txt.strip(), flags=re.IGNORECASE)
|
|
|
|
|
|
def beAdocPdf(d, q, a, eng, image, poss):
|
|
qprefix = "Question: " if eng else "问题:"
|
|
aprefix = "Answer: " if eng else "回答:"
|
|
d["content_with_weight"] = "\t".join(
|
|
[qprefix + rmPrefix(q), aprefix + rmPrefix(a)])
|
|
d["content_ltks"] = rag_tokenizer.tokenize(q)
|
|
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
|
|
d["image"] = image
|
|
add_positions(d, poss)
|
|
return d
|
|
|
|
def beAdoc(d, q, a, eng):
|
|
qprefix = "Question: " if eng else "问题:"
|
|
aprefix = "Answer: " if eng else "回答:"
|
|
d["content_with_weight"] = "\t".join(
|
|
[qprefix + rmPrefix(q), aprefix + rmPrefix(a)])
|
|
d["content_ltks"] = rag_tokenizer.tokenize(q)
|
|
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
|
|
return d
|
|
|
|
|
|
def mdQuestionLevel(s):
|
|
match = re.match(r'#*', s)
|
|
return (len(match.group(0)), s.lstrip('#').lstrip()) if match else (0, s)
|
|
|
|
|
|
def chunk(filename, binary=None, lang="Chinese", callback=None, **kwargs):
|
|
"""
|
|
Excel and csv(txt) format files are supported.
|
|
If the file is in excel format, there should be 2 column question and answer without header.
|
|
And question column is ahead of answer column.
|
|
And it's O.K if it has multiple sheets as long as the columns are rightly composed.
|
|
|
|
If it's in csv format, it should be UTF-8 encoded. Use TAB as delimiter to separate question and answer.
|
|
|
|
All the deformed lines will be ignored.
|
|
Every pair of Q&A will be treated as a chunk.
|
|
"""
|
|
eng = lang.lower() == "english"
|
|
res = []
|
|
doc = {
|
|
"docnm_kwd": filename,
|
|
"title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))
|
|
}
|
|
if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
excel_parser = Excel()
|
|
for q, a in excel_parser(filename, binary, callback):
|
|
res.append(beAdoc(deepcopy(doc), q, a, eng))
|
|
return res
|
|
elif re.search(r"\.(txt|csv)$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
txt = ""
|
|
if binary:
|
|
encoding = find_codec(binary)
|
|
txt = binary.decode(encoding, errors="ignore")
|
|
else:
|
|
with open(filename, "r") as f:
|
|
while True:
|
|
l = f.readline()
|
|
if not l:
|
|
break
|
|
txt += l
|
|
lines = txt.split("\n")
|
|
comma, tab = 0, 0
|
|
for l in lines:
|
|
if len(l.split(",")) == 2: comma += 1
|
|
if len(l.split("\t")) == 2: tab += 1
|
|
delimiter = "\t" if tab >= comma else ","
|
|
|
|
fails = []
|
|
question, answer = "", ""
|
|
i = 0
|
|
while i < len(lines):
|
|
arr = lines[i].split(delimiter)
|
|
if len(arr) != 2:
|
|
if question: answer += "\n" + lines[i]
|
|
else:
|
|
fails.append(str(i+1))
|
|
elif len(arr) == 2:
|
|
if question and answer: res.append(beAdoc(deepcopy(doc), question, answer, eng))
|
|
question, answer = arr
|
|
i += 1
|
|
if len(res) % 999 == 0:
|
|
callback(len(res) * 0.6 / len(lines), ("Extract Q&A: {}".format(len(res)) + (
|
|
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
|
|
|
|
if question: res.append(beAdoc(deepcopy(doc), question, answer, eng))
|
|
|
|
callback(0.6, ("Extract Q&A: {}".format(len(res)) + (
|
|
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
|
|
|
|
return res
|
|
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
pdf_parser = Pdf()
|
|
count = 0
|
|
qai_list, tbls = pdf_parser(filename if not binary else binary,
|
|
from_page=0, to_page=10000, callback=callback)
|
|
|
|
res = tokenize_table(tbls, doc, eng)
|
|
|
|
for q, a, image, poss in qai_list:
|
|
count += 1
|
|
res.append(beAdocPdf(deepcopy(doc), q, a, eng, image, poss))
|
|
return res
|
|
elif re.search(r"\.(md|markdown)$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
txt = ""
|
|
if binary:
|
|
encoding = find_codec(binary)
|
|
txt = binary.decode(encoding, errors="ignore")
|
|
else:
|
|
with open(filename, "r") as f:
|
|
while True:
|
|
l = f.readline()
|
|
if not l:
|
|
break
|
|
txt += l
|
|
lines = txt.split("\n")
|
|
last_question, last_answer = "", ""
|
|
question_stack, level_stack = [], []
|
|
code_block = False
|
|
level_index = [-1] * 7
|
|
for index, l in enumerate(lines):
|
|
if not l.strip():
|
|
continue
|
|
if l.strip().startswith('```'):
|
|
code_block = not code_block
|
|
question_level, question = 0, ''
|
|
if not code_block:
|
|
question_level, question = mdQuestionLevel(l)
|
|
|
|
if not question_level or question_level > 6:
|
|
last_answer = f'{last_answer}\n{l}'
|
|
else:
|
|
if last_answer:
|
|
sum_question = '\n'.join(question_stack)
|
|
if sum_question:
|
|
res.append(beAdoc(deepcopy(doc), sum_question, last_answer, eng))
|
|
last_answer = ''
|
|
|
|
i = question_level
|
|
while question_stack and i <= level_stack[-1]:
|
|
question_stack.pop()
|
|
level_stack.pop()
|
|
question_stack.append(question)
|
|
level_stack.append(question_level)
|
|
if last_answer:
|
|
sum_question = '\n'.join(question_stack)
|
|
if sum_question:
|
|
res.append(beAdoc(deepcopy(doc), sum_question, last_answer, eng))
|
|
return res
|
|
|
|
raise NotImplementedError(
|
|
"Excel, csv(txt), pdf and markdown format files are supported.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import sys
|
|
|
|
def dummy(prog=None, msg=""):
|
|
pass
|
|
chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)
|
|
|