File size: 11,704 Bytes
cdba7f7
 
 
 
 
 
 
 
 
 
 
 
e6acaf6
89444d3
e6acaf6
37e8b27
e6acaf6
 
37e8b27
 
 
 
cdba7f7
e6acaf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e0a689
 
 
 
 
 
 
 
 
 
 
 
e6acaf6
5e0a689
 
 
 
 
e6acaf6
407b252
e6acaf6
5e0a689
 
e6acaf6
 
37e8b27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6acaf6
5e0a689
 
e6acaf6
 
37e8b27
 
 
 
 
 
 
 
 
 
 
e6acaf6
 
 
5e0a689
 
cfd6ece
 
e6acaf6
 
9aa975e
d923a42
 
 
 
e6acaf6
41c7a59
a8294f2
 
 
 
 
e6acaf6
a8294f2
 
 
 
 
89444d3
e6acaf6
89444d3
 
cfd6ece
89444d3
e6acaf6
 
 
5e0a689
89444d3
e6acaf6
 
 
 
 
d54aa01
b5b25b4
e6acaf6
 
 
 
5e0a689
 
e6acaf6
 
22390c0
 
 
 
 
 
e6acaf6
22390c0
 
 
 
e6acaf6
22390c0
 
 
 
 
 
 
e6acaf6
 
 
 
22390c0
 
e6acaf6
 
 
 
37e8b27
d923a42
37e8b27
 
 
 
 
 
 
 
 
 
 
d923a42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aa975e
d923a42
 
 
 
 
 
 
 
 
 
 
9aa975e
d923a42
 
 
37e8b27
5e0a689
d923a42
e6acaf6
 
5e0a689
e6acaf6
5e0a689
37e8b27
e6acaf6
37e8b27
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import re
from copy import deepcopy
from io import BytesIO
from timeit import default_timer as timer
from nltk import word_tokenize
from openpyxl import load_workbook
from rag.nlp import is_english, random_choices, find_codec, qbullets_category, add_positions, has_qbullet
from rag.nlp import rag_tokenizer, tokenize_table
from rag.settings import cron_logger
from deepdoc.parser import PdfParser, ExcelParser
class Excel(ExcelParser):
    def __call__(self, fnm, binary=None, callback=None):
        if not binary:
            wb = load_workbook(fnm)
        else:
            wb = load_workbook(BytesIO(binary))
        total = 0
        for sheetname in wb.sheetnames:
            total += len(list(wb[sheetname].rows))

        res, fails = [], []
        for sheetname in wb.sheetnames:
            ws = wb[sheetname]
            rows = list(ws.rows)
            for i, r in enumerate(rows):
                q, a = "", ""
                for cell in r:
                    if not cell.value:
                        continue
                    if not q:
                        q = str(cell.value)
                    elif not a:
                        a = str(cell.value)
                    else:
                        break
                if q and a:
                    res.append((q, a))
                else:
                    fails.append(str(i + 1))
                if len(res) % 999 == 0:
                    callback(len(res) *
                             0.6 /
                             total, ("Extract Q&A: {}".format(len(res)) +
                                     (f"{len(fails)} failure, line: %s..." %
                                      (",".join(fails[:3])) if fails else "")))

        callback(0.6, ("Extract Q&A: {}. ".format(len(res)) + (
            f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
        self.is_english = is_english(
            [rmPrefix(q) for q, _ in random_choices(res, k=30) if len(q) > 1])
        return res

class Pdf(PdfParser):
    def __call__(self, filename, binary=None, from_page=0,

                 to_page=100000, zoomin=3, callback=None):
        start = timer()
        callback(msg="OCR is running...")
        self.__images__(
            filename if not binary else binary,
            zoomin,
            from_page,
            to_page,
            callback
        )
        callback(msg="OCR finished")
        cron_logger.info("OCR({}~{}): {}".format(from_page, to_page, timer() - start))
        start = timer()
        self._layouts_rec(zoomin, drop=False)
        callback(0.63, "Layout analysis finished.")
        self._table_transformer_job(zoomin)
        callback(0.65, "Table analysis finished.")
        self._text_merge()
        callback(0.67, "Text merging finished")
        tbls = self._extract_table_figure(True, zoomin, True, True)
        #self._naive_vertical_merge()
        # self._concat_downward()
        #self._filter_forpages()
        cron_logger.info("layouts: {}".format(timer() - start))
        sections = [b["text"] for b in self.boxes]
        bull_x0_list = []
        q_bull, reg = qbullets_category(sections)
        if q_bull == -1:
            raise ValueError("Unable to recognize Q&A structure.")
        qai_list = []
        last_q, last_a, last_tag = '', '', ''
        last_index = -1
        last_box = {'text':''}
        last_bull = None
        for box in self.boxes:
            section, line_tag = box['text'], self._line_tag(box, zoomin)
            has_bull, index = has_qbullet(reg, box, last_box, last_index, last_bull, bull_x0_list)
            last_box, last_index, last_bull = box, index, has_bull
            if not has_bull:  # No question bullet
                if not last_q:
                    continue
                else:
                    last_a = f'{last_a}{section}'
                    last_tag = f'{last_tag}{line_tag}'
            else:
                if last_q:
                    qai_list.append((last_q, last_a, *self.crop(last_tag, need_position=True)))
                    last_q, last_a, last_tag = '', '', ''
                last_q = has_bull.group()
                _, end = has_bull.span()
                last_a = section[end:]
                last_tag = line_tag
        if last_q:
            qai_list.append((last_q, last_a, *self.crop(last_tag, need_position=True)))
        return qai_list, tbls
    
def rmPrefix(txt):
    return re.sub(
        r"^(问题|答案|回答|user|assistant|Q|A|Question|Answer|问|答)[\t:: ]+", "", txt.strip(), flags=re.IGNORECASE)


def beAdocPdf(d, q, a, eng, image, poss):
    qprefix = "Question: " if eng else "问题:"
    aprefix = "Answer: " if eng else "回答:"
    d["content_with_weight"] = "\t".join(
        [qprefix + rmPrefix(q), aprefix + rmPrefix(a)])
    d["content_ltks"] = rag_tokenizer.tokenize(q)
    d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
    d["image"] = image
    add_positions(d, poss)
    return d

def beAdoc(d, q, a, eng):
    qprefix = "Question: " if eng else "问题:"
    aprefix = "Answer: " if eng else "回答:"
    d["content_with_weight"] = "\t".join(
        [qprefix + rmPrefix(q), aprefix + rmPrefix(a)])
    d["content_ltks"] = rag_tokenizer.tokenize(q)
    d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
    return d


def mdQuestionLevel(s):
    match = re.match(r'#*', s)
    return (len(match.group(0)), s.lstrip('#').lstrip()) if match else (0, s)


def chunk(filename, binary=None, lang="Chinese", callback=None, **kwargs):
    """

        Excel and csv(txt) format files are supported.

        If the file is in excel format, there should be 2 column question and answer without header.

        And question column is ahead of answer column.

        And it's O.K if it has multiple sheets as long as the columns are rightly composed.



        If it's in csv format, it should be UTF-8 encoded. Use TAB as delimiter to separate question and answer.



        All the deformed lines will be ignored.

        Every pair of Q&A will be treated as a chunk.

    """
    eng = lang.lower() == "english"
    res = []
    doc = {
        "docnm_kwd": filename,
        "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))
    }
    if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        excel_parser = Excel()
        for q, a in excel_parser(filename, binary, callback):
            res.append(beAdoc(deepcopy(doc), q, a, eng))
        return res
    elif re.search(r"\.(txt|csv)$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        txt = ""
        if binary:
            encoding = find_codec(binary)
            txt = binary.decode(encoding, errors="ignore")
        else:
            with open(filename, "r") as f:
                while True:
                    l = f.readline()
                    if not l:
                        break
                    txt += l
        lines = txt.split("\n")
        comma, tab = 0, 0
        for l in lines:
            if len(l.split(",")) == 2: comma += 1
            if len(l.split("\t")) == 2: tab += 1
        delimiter = "\t" if tab >= comma else ","

        fails = []
        question, answer = "", ""
        i = 0
        while i < len(lines):
            arr = lines[i].split(delimiter)
            if len(arr) != 2:
                if question: answer += "\n" + lines[i]
                else:
                    fails.append(str(i+1))
            elif len(arr) == 2:
                if question and answer: res.append(beAdoc(deepcopy(doc), question, answer, eng))
                question, answer = arr
            i += 1
            if len(res) % 999 == 0:
                callback(len(res) * 0.6 / len(lines), ("Extract Q&A: {}".format(len(res)) + (
                    f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))

        if question: res.append(beAdoc(deepcopy(doc), question, answer, eng))

        callback(0.6, ("Extract Q&A: {}".format(len(res)) + (
            f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))

        return res
    elif re.search(r"\.pdf$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        pdf_parser = Pdf()
        count = 0
        qai_list, tbls = pdf_parser(filename if not binary else binary,
                                    from_page=0, to_page=10000, callback=callback)
        
        res = tokenize_table(tbls, doc, eng)

        for q, a, image, poss in qai_list:
            count += 1
            res.append(beAdocPdf(deepcopy(doc), q, a, eng, image, poss))
        return res
    elif re.search(r"\.(md|markdown)$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        txt = ""
        if binary:
            encoding = find_codec(binary)
            txt = binary.decode(encoding, errors="ignore")
        else:
            with open(filename, "r") as f:
                while True:
                    l = f.readline()
                    if not l:
                        break
                    txt += l
        lines = txt.split("\n")
        last_question, last_answer = "", ""
        question_stack, level_stack = [], []
        code_block = False
        level_index = [-1] * 7
        for index, l in enumerate(lines):
            if not l.strip():
                continue
            if l.strip().startswith('```'):
                code_block = not code_block
            question_level, question = 0, ''
            if not code_block:
                question_level, question = mdQuestionLevel(l)

            if not question_level or question_level > 6: # not a question
                last_answer = f'{last_answer}\n{l}'
            else:   # is a question
                if last_answer:
                    sum_question = '\n'.join(question_stack)
                    if sum_question:
                        res.append(beAdoc(deepcopy(doc), sum_question, last_answer, eng))
                    last_answer = ''

                i = question_level
                while question_stack and i <= level_stack[-1]:
                    question_stack.pop()
                    level_stack.pop()
                question_stack.append(question)
                level_stack.append(question_level)
        if last_answer:
            sum_question = '\n'.join(question_stack)
            if sum_question:
                res.append(beAdoc(deepcopy(doc), sum_question, last_answer, eng))
        return res

    raise NotImplementedError(
        "Excel, csv(txt), pdf and markdown format files are supported.")


if __name__ == "__main__":
    import sys

    def dummy(prog=None, msg=""):
        pass
    chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)