|
import copy
|
|
import random
|
|
import re
|
|
from io import BytesIO
|
|
from docx import Document
|
|
import numpy as np
|
|
from rag.app import bullets_category, BULLET_PATTERN, is_english, tokenize, remove_contents_table
|
|
from rag.nlp import huqie
|
|
from rag.parser.docx_parser import HuDocxParser
|
|
from rag.parser.pdf_parser import HuParser
|
|
|
|
|
|
class Pdf(HuParser):
|
|
def __call__(self, filename, binary=None, from_page=0,
|
|
to_page=100000, zoomin=3, callback=None):
|
|
self.__images__(
|
|
filename if not binary else binary,
|
|
zoomin,
|
|
from_page,
|
|
to_page)
|
|
callback(0.1, "OCR finished")
|
|
|
|
from timeit import default_timer as timer
|
|
start = timer()
|
|
self._layouts_paddle(zoomin)
|
|
callback(0.47, "Layout analysis finished")
|
|
print("paddle layouts:", timer() - start)
|
|
self._table_transformer_job(zoomin)
|
|
callback(0.68, "Table analysis finished")
|
|
self._text_merge()
|
|
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
|
|
self._concat_downward(concat_between_pages=False)
|
|
self._filter_forpages()
|
|
self._merge_with_same_bullet()
|
|
callback(0.75, "Text merging finished.")
|
|
tbls = self._extract_table_figure(True, zoomin, False)
|
|
|
|
callback(0.8, "Text extraction finished")
|
|
|
|
return [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno","")) for b in self.boxes]
|
|
|
|
|
|
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
|
|
doc = {
|
|
"docnm_kwd": filename,
|
|
"title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename))
|
|
}
|
|
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
|
|
pdf_parser = None
|
|
sections,tbls = [], []
|
|
if re.search(r"\.docx?$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
doc_parser = HuDocxParser()
|
|
|
|
sections, tbls = doc_parser(binary if binary else filename)
|
|
remove_contents_table(sections, eng = is_english(random.choices([t for t,_ in sections], k=200)))
|
|
callback(0.8, "Finish parsing.")
|
|
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
|
|
pdf_parser = Pdf()
|
|
sections,tbls = pdf_parser(filename if not binary else binary,
|
|
from_page=from_page, to_page=to_page, callback=callback)
|
|
elif re.search(r"\.txt$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
txt = ""
|
|
if binary:txt = binary.decode("utf-8")
|
|
else:
|
|
with open(filename, "r") as f:
|
|
while True:
|
|
l = f.readline()
|
|
if not l:break
|
|
txt += l
|
|
sections = txt.split("\n")
|
|
sections = [(l,"") for l in sections if l]
|
|
remove_contents_table(sections, eng = is_english(random.choices([t for t,_ in sections], k=200)))
|
|
callback(0.8, "Finish parsing.")
|
|
else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
|
|
|
|
bull = bullets_category([b["text"] for b in random.choices([t for t,_ in sections], k=100)])
|
|
projs = [len(BULLET_PATTERN[bull]) + 1] * len(sections)
|
|
levels = [[]] * len(BULLET_PATTERN[bull]) + 2
|
|
for i, (txt, layout) in enumerate(sections):
|
|
for j, p in enumerate(BULLET_PATTERN[bull]):
|
|
if re.match(p, txt.strip()):
|
|
projs[i] = j
|
|
levels[j].append(i)
|
|
break
|
|
else:
|
|
if re.search(r"(title|head)", layout):
|
|
projs[i] = BULLET_PATTERN[bull]
|
|
levels[BULLET_PATTERN[bull]].append(i)
|
|
else:
|
|
levels[BULLET_PATTERN[bull] + 1].append(i)
|
|
sections = [t for t,_ in sections]
|
|
|
|
def binary_search(arr, target):
|
|
if target > arr[-1]: return len(arr) - 1
|
|
if target > arr[0]: return -1
|
|
s, e = 0, len(arr)
|
|
while e - s > 1:
|
|
i = (e + s) // 2
|
|
if target > arr[i]:
|
|
s = i
|
|
continue
|
|
elif target < arr[i]:
|
|
e = i
|
|
continue
|
|
else:
|
|
assert False
|
|
return s
|
|
|
|
cks = []
|
|
readed = [False] * len(sections)
|
|
levels = levels[::-1]
|
|
for i, arr in enumerate(levels):
|
|
for j in arr:
|
|
if readed[j]: continue
|
|
readed[j] = True
|
|
cks.append([j])
|
|
if i + 1 == len(levels) - 1: continue
|
|
for ii in range(i + 1, len(levels)):
|
|
jj = binary_search(levels[ii], j)
|
|
if jj < 0: break
|
|
if jj > cks[-1][-1]: cks[-1].pop(-1)
|
|
cks[-1].append(levels[ii][jj])
|
|
|
|
|
|
eng = is_english(random.choices(sections, k=218))
|
|
|
|
res = []
|
|
|
|
for img, rows in tbls:
|
|
bs = 10
|
|
de = ";" if eng else ";"
|
|
for i in range(0, len(rows), bs):
|
|
d = copy.deepcopy(doc)
|
|
r = de.join(rows[i:i + bs])
|
|
r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
|
|
tokenize(d, r, eng)
|
|
d["image"] = img
|
|
res.append(d)
|
|
|
|
for ck in cks:
|
|
print("\n-".join(ck[::-1]))
|
|
ck = "\n".join(ck[::-1])
|
|
d = copy.deepcopy(doc)
|
|
if pdf_parser:
|
|
d["image"] = pdf_parser.crop(ck)
|
|
ck = pdf_parser.remove_tag(ck)
|
|
tokenize(d, ck, eng)
|
|
res.append(d)
|
|
return res
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import sys
|
|
chunk(sys.argv[1])
|
|
|