File size: 5,720 Bytes
e6acaf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import copy
import random
import re
from io import BytesIO
from docx import Document
import numpy as np
from rag.app import bullets_category, BULLET_PATTERN, is_english, tokenize, remove_contents_table
from rag.nlp import huqie
from rag.parser.docx_parser import HuDocxParser
from rag.parser.pdf_parser import HuParser
class Pdf(HuParser):
def __call__(self, filename, binary=None, from_page=0,
to_page=100000, zoomin=3, callback=None):
self.__images__(
filename if not binary else binary,
zoomin,
from_page,
to_page)
callback(0.1, "OCR finished")
from timeit import default_timer as timer
start = timer()
self._layouts_paddle(zoomin)
callback(0.47, "Layout analysis finished")
print("paddle layouts:", timer() - start)
self._table_transformer_job(zoomin)
callback(0.68, "Table analysis finished")
self._text_merge()
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
self._concat_downward(concat_between_pages=False)
self._filter_forpages()
self._merge_with_same_bullet()
callback(0.75, "Text merging finished.")
tbls = self._extract_table_figure(True, zoomin, False)
callback(0.8, "Text extraction finished")
return [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno","")) for b in self.boxes]
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
doc = {
"docnm_kwd": filename,
"title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename))
}
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
pdf_parser = None
sections,tbls = [], []
if re.search(r"\.docx?$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
doc_parser = HuDocxParser()
# TODO: table of contents need to be removed
sections, tbls = doc_parser(binary if binary else filename)
remove_contents_table(sections, eng = is_english(random.choices([t for t,_ in sections], k=200)))
callback(0.8, "Finish parsing.")
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
pdf_parser = Pdf()
sections,tbls = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
elif re.search(r"\.txt$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
txt = ""
if binary:txt = binary.decode("utf-8")
else:
with open(filename, "r") as f:
while True:
l = f.readline()
if not l:break
txt += l
sections = txt.split("\n")
sections = [(l,"") for l in sections if l]
remove_contents_table(sections, eng = is_english(random.choices([t for t,_ in sections], k=200)))
callback(0.8, "Finish parsing.")
else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
bull = bullets_category([b["text"] for b in random.choices([t for t,_ in sections], k=100)])
projs = [len(BULLET_PATTERN[bull]) + 1] * len(sections)
levels = [[]] * len(BULLET_PATTERN[bull]) + 2
for i, (txt, layout) in enumerate(sections):
for j, p in enumerate(BULLET_PATTERN[bull]):
if re.match(p, txt.strip()):
projs[i] = j
levels[j].append(i)
break
else:
if re.search(r"(title|head)", layout):
projs[i] = BULLET_PATTERN[bull]
levels[BULLET_PATTERN[bull]].append(i)
else:
levels[BULLET_PATTERN[bull] + 1].append(i)
sections = [t for t,_ in sections]
def binary_search(arr, target):
if target > arr[-1]: return len(arr) - 1
if target > arr[0]: return -1
s, e = 0, len(arr)
while e - s > 1:
i = (e + s) // 2
if target > arr[i]:
s = i
continue
elif target < arr[i]:
e = i
continue
else:
assert False
return s
cks = []
readed = [False] * len(sections)
levels = levels[::-1]
for i, arr in enumerate(levels):
for j in arr:
if readed[j]: continue
readed[j] = True
cks.append([j])
if i + 1 == len(levels) - 1: continue
for ii in range(i + 1, len(levels)):
jj = binary_search(levels[ii], j)
if jj < 0: break
if jj > cks[-1][-1]: cks[-1].pop(-1)
cks[-1].append(levels[ii][jj])
# is it English
eng = is_english(random.choices(sections, k=218))
res = []
# add tables
for img, rows in tbls:
bs = 10
de = ";" if eng else ";"
for i in range(0, len(rows), bs):
d = copy.deepcopy(doc)
r = de.join(rows[i:i + bs])
r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
tokenize(d, r, eng)
d["image"] = img
res.append(d)
# wrap up to es documents
for ck in cks:
print("\n-".join(ck[::-1]))
ck = "\n".join(ck[::-1])
d = copy.deepcopy(doc)
if pdf_parser:
d["image"] = pdf_parser.crop(ck)
ck = pdf_parser.remove_tag(ck)
tokenize(d, ck, eng)
res.append(d)
return res
if __name__ == "__main__":
import sys
chunk(sys.argv[1])
|