File size: 5,720 Bytes
e6acaf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import copy
import random
import re
from io import BytesIO
from docx import Document
import numpy as np
from rag.app import bullets_category, BULLET_PATTERN, is_english, tokenize, remove_contents_table
from rag.nlp import huqie
from rag.parser.docx_parser import HuDocxParser
from rag.parser.pdf_parser import HuParser


class Pdf(HuParser):
    def __call__(self, filename, binary=None, from_page=0,

                 to_page=100000, zoomin=3, callback=None):
        self.__images__(
            filename if not binary else binary,
            zoomin,
            from_page,
            to_page)
        callback(0.1, "OCR finished")

        from timeit import default_timer as timer
        start = timer()
        self._layouts_paddle(zoomin)
        callback(0.47, "Layout analysis finished")
        print("paddle layouts:", timer() - start)
        self._table_transformer_job(zoomin)
        callback(0.68, "Table analysis finished")
        self._text_merge()
        column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
        self._concat_downward(concat_between_pages=False)
        self._filter_forpages()
        self._merge_with_same_bullet()
        callback(0.75, "Text merging finished.")
        tbls = self._extract_table_figure(True, zoomin, False)

        callback(0.8, "Text extraction finished")

        return [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno","")) for b in self.boxes]


def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
    doc = {
        "docnm_kwd": filename,
        "title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename))
    }
    doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
    pdf_parser = None
    sections,tbls = [], []
    if re.search(r"\.docx?$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        doc_parser = HuDocxParser()
        # TODO: table of contents need to be removed
        sections, tbls = doc_parser(binary if binary else filename)
        remove_contents_table(sections, eng = is_english(random.choices([t for t,_ in sections], k=200)))
        callback(0.8, "Finish parsing.")
    elif re.search(r"\.pdf$", filename, re.IGNORECASE):
        pdf_parser = Pdf()
        sections,tbls = pdf_parser(filename if not binary else binary,
                         from_page=from_page, to_page=to_page, callback=callback)
    elif re.search(r"\.txt$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        txt = ""
        if binary:txt = binary.decode("utf-8")
        else:
            with open(filename, "r") as f:
                while True:
                    l = f.readline()
                    if not l:break
                    txt += l
            sections = txt.split("\n")
        sections = [(l,"") for l in sections if l]
        remove_contents_table(sections, eng = is_english(random.choices([t for t,_ in sections], k=200)))
        callback(0.8, "Finish parsing.")
    else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")

    bull = bullets_category([b["text"] for b in random.choices([t for t,_ in sections], k=100)])
    projs = [len(BULLET_PATTERN[bull]) + 1] * len(sections)
    levels = [[]] * len(BULLET_PATTERN[bull]) + 2
    for i, (txt, layout) in enumerate(sections):
        for j, p in enumerate(BULLET_PATTERN[bull]):
            if re.match(p, txt.strip()):
                projs[i] = j
                levels[j].append(i)
                break
        else:
            if re.search(r"(title|head)", layout):
                projs[i] = BULLET_PATTERN[bull]
                levels[BULLET_PATTERN[bull]].append(i)
            else:
                levels[BULLET_PATTERN[bull] + 1].append(i)
    sections = [t for t,_ in sections]

    def binary_search(arr, target):
        if target > arr[-1]: return len(arr) - 1
        if target > arr[0]: return -1
        s, e = 0, len(arr)
        while e - s > 1:
            i = (e + s) // 2
            if target > arr[i]:
                s = i
                continue
            elif target < arr[i]:
                e = i
                continue
            else:
                assert False
        return s

    cks = []
    readed = [False] * len(sections)
    levels = levels[::-1]
    for i, arr in enumerate(levels):
        for j in arr:
            if readed[j]: continue
            readed[j] = True
            cks.append([j])
            if i + 1 == len(levels) - 1: continue
            for ii in range(i + 1, len(levels)):
                jj = binary_search(levels[ii], j)
                if jj < 0: break
                if jj > cks[-1][-1]: cks[-1].pop(-1)
                cks[-1].append(levels[ii][jj])

    # is it English
    eng = is_english(random.choices(sections, k=218))

    res = []
    # add tables
    for img, rows in tbls:
        bs = 10
        de = ";" if eng else ";"
        for i in range(0, len(rows), bs):
            d = copy.deepcopy(doc)
            r = de.join(rows[i:i + bs])
            r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
            tokenize(d, r, eng)
            d["image"] = img
            res.append(d)
    # wrap up to es documents
    for ck in cks:
        print("\n-".join(ck[::-1]))
        ck = "\n".join(ck[::-1])
        d = copy.deepcopy(doc)
        if pdf_parser:
            d["image"] = pdf_parser.crop(ck)
            ck = pdf_parser.remove_tag(ck)
        tokenize(d, ck, eng)
        res.append(d)
    return res


if __name__ == "__main__":
    import sys
    chunk(sys.argv[1])