DRAFT Python API Reference
THE API REFERENCES BELOW ARE STILL UNDER DEVELOPMENT.
:::tip NOTE Dataset Management :::
Create dataset
RAGFlow.create_dataset(
name: str,
avatar: str = "",
description: str = "",
language: str = "English",
permission: str = "me",
document_count: int = 0,
chunk_count: int = 0,
chunk_method: str = "naive",
parser_config: DataSet.ParserConfig = None
) -> DataSet
Creates a dataset.
Parameters
name: str
, Required
The unique name of the dataset to create. It must adhere to the following requirements:
- Permitted characters include:
- English letters (a-z, A-Z)
- Digits (0-9)
- "_" (underscore)
- Must begin with an English letter or underscore.
- Maximum 65,535 characters.
- Case-insensitive.
avatar: str
Base64 encoding of the avatar. Defaults to ""
description: str
A brief description of the dataset to create. Defaults to ""
.
language: str
The language setting of the dataset to create. Available options:
"English"
(Default)"Chinese"
permission
Specifies who can operate on the dataset. You can set it only to "me"
for now.
chunk_method, str
The default parsing method of the knwoledge . Defaults to "naive"
.
parser_config
The parser configuration of the dataset. A ParserConfig
object contains the following attributes:
chunk_token_count
: Defaults to128
.layout_recognize
: Defaults toTrue
.delimiter
: Defaults to'\n!?。;!?'
.task_page_size
: Defaults to12
.
Returns
- Success: A
dataset
object. - Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag_object.create_dataset(name="kb_1")
Delete datasets
RAGFlow.delete_datasets(ids: list[str] = None)
Deletes datasets by name or ID.
Parameters
ids
The IDs of the datasets to delete.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
rag.delete_datasets(ids=["id_1","id_2"])
List datasets
RAGFlow.list_datasets(
page: int = 1,
page_size: int = 1024,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> list[DataSet]
Retrieves a list of datasets.
Parameters
page: int
The current page number to retrieve from the paginated results. Defaults to 1
.
page_size: int
The number of records on each page. Defaults to 1024
.
order_by: str
The field by which the records should be sorted. This specifies the attribute or column used to order the results. Defaults to "create_time"
.
desc: bool
Indicates whether the retrieved datasets should be sorted in descending order. Defaults to True
.
id: str
The id of the dataset to be got. Defaults to None
.
name: str
The name of the dataset to be got. Defaults to None
.
Returns
- Success: A list of
DataSet
objects representing the retrieved datasets. - Failure:
Exception
.
Examples
List all datasets
for ds in rag_object.list_datasets():
print(ds)
Retrieve a dataset by ID
dataset = rag_object.list_datasets(id = "id_1")
print(dataset[0])
Update dataset
DataSet.update(update_message: dict)
Updates the current dataset.
Parameters
update_message: dict[str, str|int]
, Required
"name"
:str
The name of the dataset to update."embedding_model"
:str
The embedding model for generating vector embeddings.- Ensure that
"chunk_count"
is0
before updating"embedding_model"
.
- Ensure that
"chunk_method"
:str
The default parsing method for the dataset."naive"
: General"manual
: Manual"qa"
: Q&A"table"
: Table"paper"
: Paper"book"
: Book"laws"
: Laws"presentation"
: Presentation"picture"
: Picture"one"
:One"knowledge_graph"
: Knowledge Graph"email"
: Email
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag.list_datasets(name="kb_name")
dataset.update({"embedding_model":"BAAI/bge-zh-v1.5", "chunk_method":"manual"})
:::tip API GROUPING File Management within Dataset :::
Upload documents
DataSet.upload_documents(document_list: list[dict])
Uploads documents to the current dataset.
Parameters
document_list
A list of dictionaries representing the documents to upload, each containing the following keys:
"display_name"
: (Optional) The file name to display in the dataset."blob"
: (Optional) The binary content of the file to upload.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
dataset = rag_object.create_dataset(name="kb_name")
dataset.upload_documents([{"display_name": "1.txt", "blob": "<BINARY_CONTENT_OF_THE_DOC>"}, {"display_name": "2.pdf", "blob": "<BINARY_CONTENT_OF_THE_DOC>"}])
Update document
Document.update(update_message:dict)
Updates configurations for the current document.
Parameters
update_message: dict[str, str|dict[]]
, Required
"name"
:str
The name of the document to update."parser_config"
:dict[str, Any]
The parsing configuration for the document:"chunk_token_count"
: Defaults to128
."layout_recognize"
: Defaults toTrue
."delimiter"
: Defaults to'\n!?。;!?'
."task_page_size"
: Defaults to12
.
"chunk_method"
:str
The parsing method to apply to the document."naive"
: General"manual
: Manual"qa"
: Q&A"table"
: Table"paper"
: Paper"book"
: Book"laws"
: Laws"presentation"
: Presentation"picture"
: Picture"one"
: One"knowledge_graph"
: Knowledge Graph"email"
: Email
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset=rag.list_datasets(id='id')
dataset=dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
doc.update([{"parser_config": {"chunk_token_count": 256}}, {"chunk_method": "manual"}])
Download document
Document.download() -> bytes
Downloads the current document from RAGFlow.
Returns
The downloaded document in bytes.
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="id")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
open("~/ragflow.txt", "wb+").write(doc.download())
print(doc)
List documents
Dataset.list_documents(id:str =None, keywords: str=None, offset: int=0, limit:int = 1024,order_by:str = "create_time", desc: bool = True) -> list[Document]
Retrieves a list of documents from the current dataset.
Parameters
id
The ID of the document to retrieve. Defaults to None
.
keywords
The keywords to match document titles. Defaults to None
.
offset
The beginning number of records for paging. Defaults to 0
.
limit
Records number to return, -1
means all of them. Records number to return, -1
means all of them.
orderby
The field by which the documents should be sorted. Available options:
"create_time"
(Default)"update_time"
desc
Indicates whether the retrieved documents should be sorted in descending order. Defaults to True
.
Returns
- Success: A list of
Document
objects. - Failure:
Exception
.
A Document
object contains the following attributes:
id
Id of the retrieved document. Defaults to""
.thumbnail
Thumbnail image of the retrieved document. Defaults to""
.knowledgebase_id
Dataset ID related to the document. Defaults to""
.chunk_method
Method used to parse the document. Defaults to""
.parser_config
:ParserConfig
Configuration object for the parser. Defaults toNone
.source_type
: Source type of the document. Defaults to""
.type
: Type or category of the document. Defaults to""
.created_by
:str
Creator of the document. Defaults to""
.name
Name or title of the document. Defaults to""
.size
:int
Size of the document in bytes or some other unit. Defaults to0
.token_count
:int
Number of tokens in the document. Defaults to""
.chunk_count
:int
Number of chunks the document is split into. Defaults to0
.progress
:float
Current processing progress as a percentage. Defaults to0.0
.progress_msg
:str
Message indicating current progress status. Defaults to""
.process_begin_at
:datetime
Start time of the document processing. Defaults toNone
.process_duation
:float
Duration of the processing in seconds or minutes. Defaults to0.0
.
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag.create_dataset(name="kb_1")
filename1 = "~/ragflow.txt"
blob=open(filename1 , "rb").read()
list_files=[{"name":filename1,"blob":blob}]
dataset.upload_documents(list_files)
for d in dataset.list_documents(keywords="rag", offset=0, limit=12):
print(d)
Delete documents
DataSet.delete_documents(ids: list[str] = None)
Deletes specified documents or all documents from the current dataset.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag.list_datasets(name="kb_1")
ds = ds[0]
ds.delete_documents(ids=["id_1","id_2"])
Parse documents
DataSet.async_parse_documents(document_ids:list[str]) -> None
Parameters
document_ids: list[str]
The IDs of the documents to parse.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
#documents parse and cancel
rag = RAGFlow(API_KEY, HOST_ADDRESS)
ds = rag.create_dataset(name="dataset_name")
documents = [
{'name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
{'name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
{'name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
]
ds.upload_documents(documents)
documents=ds.list_documents(keywords="test")
ids=[]
for document in documents:
ids.append(document.id)
ds.async_parse_documents(ids)
print("Async bulk parsing initiated")
ds.async_cancel_parse_documents(ids)
print("Async bulk parsing cancelled")
Stop parsing documents
DataSet.async_cancel_parse_documents(document_ids:list[str])-> None
Parameters
document_ids: list[str]
The IDs of the documents to stop parsing.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
#documents parse and cancel
rag = RAGFlow(API_KEY, HOST_ADDRESS)
ds = rag.create_dataset(name="dataset_name")
documents = [
{'name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
{'name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
{'name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
]
ds.upload_documents(documents)
documents=ds.list_documents(keywords="test")
ids=[]
for document in documents:
ids.append(document.id)
ds.async_parse_documents(ids)
print("Async bulk parsing initiated")
ds.async_cancel_parse_documents(ids)
print("Async bulk parsing cancelled")
List chunks
Document.list_chunks(keywords: str = None, offset: int = 0, limit: int = -1, id : str = None) -> list[Chunk]
Parameters
keywords
List chunks whose name has the given keywords. Defaults to None
offset
The beginning number of records for paging. Defaults to 1
limit
Records number to return. Default: 30
id
The ID of the chunk to retrieve. Default: None
Returns
list[chunk]
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag.list_datasets("123")
ds = ds[0]
ds.async_parse_documents(["wdfxb5t547d"])
for c in doc.list_chunks(keywords="rag", offset=0, limit=12):
print(c)
Add chunk
Document.add_chunk(content:str) -> Chunk
Parameters
content: Required
The main text or information of the chunk.
important_keywords :list[str]
List the key terms or phrases that are significant or central to the chunk's content.
Returns
chunk
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag.list_datasets(id="123")
dtaset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
Delete chunk
Document.delete_chunks(chunk_ids: list[str])
Parameters
chunk_ids:list[str]
A list of chunk_id.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag.list_datasets(id="123")
ds = ds[0]
doc = ds.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
doc.delete_chunks(["id_1","id_2"])
Update chunk
Chunk.update(update_message: dict)
Updates the current chunk.
Parameters
update_message: dict[str, str|list[str]|int]
Required
"content"
:str
Content of the chunk."important_keywords"
:list[str]
A list of key terms to attach to the chunk."available"
:int
The chunk's availability status in the dataset.0
: Unavailable1
: Available
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="123")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
chunk.update({"content":"sdfx..."})
Retrieve chunks
RAGFlow.retrieve(question:str="", datasets:list[str]=None, document=list[str]=None, offset:int=1, limit:int=30, similarity_threshold:float=0.2, vector_similarity_weight:float=0.3, top_k:int=1024,rerank_id:str=None,keyword:bool=False,higlight:bool=False) -> list[Chunk]
Parameters
question: str
Required
The user query or query keywords. Defaults to ""
.
datasets: list[str]
, Required
The datasets to search from.
document: list[str]
The documents to search from. None
means no limitation. Defaults to None
.
offset: int
The beginning point of retrieved chunks. Defaults to 0
.
limit: int
The maximum number of chunks to return. Defaults to 6
.
Similarity_threshold: float
The minimum similarity score. Defaults to 0.2
.
similarity_threshold_weight: float
The weight of vector cosine similarity. Defaults to 0.3
. If x represents the vector cosine similarity, then (1 - x) is the term similarity weight.
top_k: int
The number of chunks engaged in vector cosine computaton. Defaults to 1024
.
rerank_id
The ID of the rerank model. Defaults to None
.
keyword
Indicates whether keyword-based matching is enabled:
True
: Enabled.False
: Disabled.
highlight:bool
Specifying whether to enable highlighting of matched terms in the results (True) or not (False).
Returns
- Success: A list of
Chunk
objects representing the document chunks. - Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag_object.list_datasets(name="ragflow")
ds = ds[0]
name = 'ragflow_test.txt'
path = './test_data/ragflow_test.txt'
rag_object.create_document(ds, name=name, blob=open(path, "rb").read())
doc = ds.list_documents(name=name)
doc = doc[0]
ds.async_parse_documents([doc.id])
for c in rag_object.retrieve(question="What's ragflow?",
datasets=[ds.id], documents=[doc.id],
offset=1, limit=30, similarity_threshold=0.2,
vector_similarity_weight=0.3,
top_k=1024
):
print(c)
:::tip API GROUPING Chat Assistant Management :::
Create chat assistant
RAGFlow.create_chat(
name: str,
avatar: str = "",
knowledgebases: list[str] = [],
llm: Chat.LLM = None,
prompt: Chat.Prompt = None
) -> Chat
Creates a chat assistant.
Parameters
The following shows the attributes of a Chat
object:
name: Required
The name of the chat assistant. Defaults to "assistant"
.
avatar
Base64 encoding of the avatar. Defaults to ""
.
knowledgebases: list[str]
The IDs of the associated datasets. Defaults to [""]
.
llm
The llm of the created chat. Defaults to None
. When the value is None
, a dictionary with the following values will be generated as the default.
An LLM
object contains the following attributes:
model_name
,str
The chat model name. If it isNone
, the user's default chat model will be returned.temperature
,float
Controls the randomness of the model's predictions. A lower temperature increases the model's conficence in its responses; a higher temperature increases creativity and diversity. Defaults to0.1
.top_p
,float
Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from. It focuses on the most likely words, cutting off the less probable ones. Defaults to0.3
presence_penalty
,float
This discourages the model from repeating the same information by penalizing words that have already appeared in the conversation. Defaults to0.2
.frequency penalty
,float
Similar to the presence penalty, this reduces the model’s tendency to repeat the same words frequently. Defaults to0.7
.max_token
,int
This sets the maximum length of the model’s output, measured in the number of tokens (words or pieces of words). Defaults to512
.
Prompt
Instructions for the LLM to follow. A Prompt
object contains the following attributes:
"similarity_threshold"
:float
A similarity score to evaluate distance between two lines of text. It's weighted keywords similarity and vector cosine similarity. If the similarity between query and chunk is less than this threshold, the chunk will be filtered out. Defaults to0.2
."keywords_similarity_weight"
:float
It's weighted keywords similarity and vector cosine similarity or rerank score (0~1). Defaults to0.7
."top_n"
:int
Not all the chunks whose similarity score is above the 'similarity threshold' will be feed to LLMs. LLM can only see these 'Top N' chunks. Defaults to8
."variables"
:list[dict[]]
If you use dialog APIs, the variables might help you chat with your clients with different strategies. The variables are used to fill in the 'System' part in prompt in order to give LLM a hint. The 'knowledge' is a very special variable which will be filled-in with the retrieved chunks. All the variables in 'System' should be curly bracketed. Defaults to[{"key": "knowledge", "optional": True}]
"rerank_model"
:str
If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to""
."empty_response"
:str
If nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is retrieved, leave this blank. Defaults toNone
."opener"
:str
The opening greeting for the user. Defaults to"Hi! I am your assistant, can I help you?"
."show_quote
:bool
Indicates whether the source of text should be displayed Defaults toTrue
."prompt"
:str
The prompt content. Defaults toYou are an intelligent assistant. Please summarize the content of the dataset to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence "The answer you are looking for is not found in the knowledge base!" Answers need to consider chat history. Here is the knowledge base: {knowledge} The above is the knowledge base.
.
Returns
- Success: A
Chat
object representing the chat assistant. - Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
kbs = rag.list_datasets(name="kb_1")
list_kb=[]
for kb in kbs:
list_kb.append(kb.id)
assi = rag.create_chat("Miss R", knowledgebases=list_kb)
Update chat
Chat.update(update_message: dict)
Updates the current chat assistant.
Parameters
update_message: dict[str, Any]
, Required
"name"
:str
The name of the chat assistant to update."avatar"
:str
Base64 encoding of the avatar. Defaults to""
"knowledgebases"
:list[str]
datasets to update."llm"
:dict
The LLM settings:"model_name"
,str
The chat model name."temperature"
,float
Controls the randomness of the model's predictions."top_p"
,float
Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from."presence_penalty"
,float
This discourages the model from repeating the same information by penalizing words that have appeared in the conversation."frequency penalty"
,float
Similar to presence penalty, this reduces the model’s tendency to repeat the same words."max_token"
,int
This sets the maximum length of the model’s output, measured in the number of tokens (words or pieces of words).
"prompt"
: Instructions for the LLM to follow."similarity_threshold"
:float
A score to evaluate distance between two lines of text. It's weighted keywords similarity and vector cosine similarity. If the similarity between query and chunk is less than this threshold, the chunk will be filtered out. Defaults to0.2
."keywords_similarity_weight"
:float
It's weighted keywords similarity and vector cosine similarity or rerank score (0~1). Defaults to0.7
."top_n"
:int
Not all the chunks whose similarity score is above the 'similarity threshold' will be feed to LLMs. LLM can only see these 'Top N' chunks. Defaults to8
."variables"
:list[dict[]]
If you use dialog APIs, the variables might help you chat with your clients with different strategies. The variables are used to fill in the 'System' part in prompt in order to give LLM a hint. The 'knowledge' is a very special variable which will be filled-in with the retrieved chunks. All the variables in 'System' should be curly bracketed. Defaults to[{"key": "knowledge", "optional": True}]
"rerank_model"
:str
If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to""
."empty_response"
:str
If nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is retrieved, leave this blank. Defaults toNone
."opener"
:str
The opening greeting for the user. Defaults to"Hi! I am your assistant, can I help you?"
."show_quote
:bool
Indicates whether the source of text should be displayed Defaults toTrue
."prompt"
:str
The prompt content. Defaults toYou are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence "The answer you are looking for is not found in the knowledge base!" Answers need to consider chat history. Here is the knowledge base: {knowledge} The above is the knowledge base.
.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
knowledge_base = rag.list_datasets(name="kb_1")
assistant = rag.create_chat("Miss R", knowledgebases=knowledge_base)
assistant.update({"name": "Stefan", "llm": {"temperature": 0.8}, "prompt": {"top_n": 8}})
Delete chats
Deletes specified chat assistants.
RAGFlow.delete_chats(ids: list[str] = None)
Parameters
ids
IDs of the chat assistants to delete. If not specified, all chat assistants will be deleted.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
rag.delete_chats(ids=["id_1","id_2"])
List chats
RAGFlow.list_chats(
page: int = 1,
page_size: int = 1024,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> list[Chat]
Retrieves a list of chat assistants.
Parameters
page
Specifies the page on which the records will be displayed. Defaults to 1
.
page_size
The number of records on each page. Defaults to 1024
.
order_by
The attribute by which the results are sorted. Defaults to "create_time"
.
desc
Indicates whether the retrieved chat assistants should be sorted in descending order. Defaults to True
.
id: string
The ID of the chat to retrieve. Defaults to None
.
name: string
The name of the chat to retrieve. Defaults to None
.
Returns
- Success: A list of
Chat
objects. - Failure:
Exception
.
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
for assistant in rag.list_chats():
print(assistant)
:::tip API GROUPING Chat-session APIs :::
Create session
Chat.create_session(name: str = "New session") -> Session
Creates a chat session.
Parameters
name
The name of the chat session to create.
Returns
- Success: A
Session
object containing the following attributes:id
:str
The auto-generated unique identifier of the created session.name
:str
The name of the created session.message
:list[Message]
The messages of the created session assistant. Default:[{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]
chat_id
:str
The ID of the associated chat assistant.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session()
Update session
Session.update(update_message: dict)
Updates the current session.
Parameters
update_message: dict[str, Any]
, Required
"name"
:str
The name of the session to update.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session("session_name")
session.update({"name": "updated_name"})
Chat
Session.ask(question: str, stream: bool = False) -> Optional[Message, iter[Message]]
Asks a question to start a conversation.
Parameters
question Required
The question to start an AI chat. Defaults to None
.
stream
Indicates whether to output responses in a streaming way:
True
: Enable streaming.False
: (Default) Disable streaming.
Returns
- A
Message
object containing the response to the question ifstream
is set toFalse
- An iterator containing multiple
message
objects (iter[Message]
) ifstream
is set toTrue
The following shows the attributes of a Message
object:
id: str
The auto-generated message ID.
content: str
The content of the message. Defaults to "Hi! I am your assistant, can I help you?"
.
reference: list[Chunk]
A list of Chunk
objects representing references to the message, each containing the following attributes:
id
str
The chunk ID.content
str
The content of the chunk.image_id
str
The ID of the snapshot of the chunk.document_id
str
The ID of the referenced document.document_name
str
The name of the referenced document.position
list[str]
The location information of the chunk within the referenced document.knowledgebase_id
str
The ID of the dataset to which the referenced document belongs.similarity
float
A composite similarity score of the chunk ranging from0
to1
, with a higher value indicating greater similarity.vector_similarity
float
A vector similarity score of the chunk ranging from0
to1
, with a higher value indicating greater similarity between vector embeddings.term_similarity
float
A keyword similarity score of the chunk ranging from0
to1
, with a higher value indicating greater similarity between keywords.
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session()
print("\n==================== Miss R =====================\n")
print(assistant.get_prologue())
while True:
question = input("\n==================== User =====================\n> ")
print("\n==================== Miss R =====================\n")
cont = ""
for ans in session.ask(question, stream=True):
print(answer.content[len(cont):], end='', flush=True)
cont = answer.content
List sessions
Chat.list_sessions(
page: int = 1,
page_size: int = 1024,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> list[Session]
Lists sessions associated with the current chat assistant.
Parameters
page
Specifies the page on which records will be displayed. Defaults to 1
.
page_size
The number of records on each page. Defaults to 1024
.
orderby
The field by which the sessions should be sorted. Available options:
"create_time"
(Default)"update_time"
desc
Indicates whether the retrieved sessions should be sorted in descending order. Defaults to True
.
id
The ID of the chat session to retrieve. Defaults to None
.
name
The name of the chat to retrieve. Defaults to None
.
Returns
- Success: A list of
Session
objects associated with the current chat assistant. - Failure:
Exception
.
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag.list_chats(name="Miss R")
assistant = assistant[0]
for session in assistant.list_sessions():
print(session)
Delete sessions
Chat.delete_sessions(ids:list[str] = None)
Deletes specified sessions or all sessions associated with the current chat assistant.
Parameters
ids
IDs of the sessions to delete. If not specified, all sessions associated with the current chat assistant will be deleted.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag.list_chats(name="Miss R")
assistant = assistant[0]
assistant.delete_sessions(ids=["id_1","id_2"])