ragflow / api /python_api_reference.md
writinwaters
DRAFT: Updated chunk APIs (#2901)
4c39067
|
raw
history blame
32.6 kB

DRAFT Python API Reference

THE API REFERENCES BELOW ARE STILL UNDER DEVELOPMENT.

:::tip NOTE Dataset Management :::

Create dataset

RAGFlow.create_dataset(
    name: str,
    avatar: str = "",
    description: str = "",
    language: str = "English",
    permission: str = "me", 
    document_count: int = 0,
    chunk_count: int = 0,
    chunk_method: str = "naive",
    parser_config: DataSet.ParserConfig = None
) -> DataSet

Creates a dataset.

Parameters

name: str, Required

The unique name of the dataset to create. It must adhere to the following requirements:

  • Permitted characters include:
    • English letters (a-z, A-Z)
    • Digits (0-9)
    • "_" (underscore)
  • Must begin with an English letter or underscore.
  • Maximum 65,535 characters.
  • Case-insensitive.

avatar: str

Base64 encoding of the avatar. Defaults to ""

description: str

A brief description of the dataset to create. Defaults to "".

language: str

The language setting of the dataset to create. Available options:

  • "English" (Default)
  • "Chinese"

permission

Specifies who can operate on the dataset. You can set it only to "me" for now.

chunk_method, str

The default parsing method of the knwoledge . Defaults to "naive".

parser_config

The parser configuration of the dataset. A ParserConfig object contains the following attributes:

  • chunk_token_count: Defaults to 128.
  • layout_recognize: Defaults to True.
  • delimiter: Defaults to '\n!?。;!?'.
  • task_page_size: Defaults to 12.

Returns

  • Success: A dataset object.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag_object.create_dataset(name="kb_1")

Delete datasets

RAGFlow.delete_datasets(ids: list[str] = None)

Deletes datasets by name or ID.

Parameters

ids

The IDs of the datasets to delete.

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

rag.delete_datasets(ids=["id_1","id_2"])

List datasets

RAGFlow.list_datasets(
    page: int = 1, 
    page_size: int = 1024, 
    orderby: str = "create_time", 
    desc: bool = True,
    id: str = None,
    name: str = None
) -> list[DataSet]

Retrieves a list of datasets.

Parameters

page: int

The current page number to retrieve from the paginated results. Defaults to 1.

page_size: int

The number of records on each page. Defaults to 1024.

order_by: str

The field by which the records should be sorted. This specifies the attribute or column used to order the results. Defaults to "create_time".

desc: bool

Indicates whether the retrieved datasets should be sorted in descending order. Defaults to True.

id: str

The id of the dataset to be got. Defaults to None.

name: str

The name of the dataset to be got. Defaults to None.

Returns

  • Success: A list of DataSet objects representing the retrieved datasets.
  • Failure: Exception.

Examples

List all datasets

for ds in rag_object.list_datasets():
    print(ds)

Retrieve a dataset by ID

dataset = rag_object.list_datasets(id = "id_1")
print(dataset[0])

Update dataset

DataSet.update(update_message: dict)

Updates the current dataset.

Parameters

update_message: dict[str, str|int], Required

  • "name": str The name of the dataset to update.
  • "embedding_model": str The embedding model for generating vector embeddings.
    • Ensure that "chunk_count" is 0 before updating "embedding_model".
  • "chunk_method": str The default parsing method for the dataset.
    • "naive": General
    • "manual: Manual
    • "qa": Q&A
    • "table": Table
    • "paper": Paper
    • "book": Book
    • "laws": Laws
    • "presentation": Presentation
    • "picture": Picture
    • "one":One
    • "knowledge_graph": Knowledge Graph
    • "email": Email

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag.list_datasets(name="kb_name")
dataset.update({"embedding_model":"BAAI/bge-zh-v1.5", "chunk_method":"manual"})

:::tip API GROUPING File Management within Dataset :::


Upload documents

DataSet.upload_documents(document_list: list[dict])

Uploads documents to the current dataset.

Parameters

document_list

A list of dictionaries representing the documents to upload, each containing the following keys:

  • "display_name": (Optional) The file name to display in the dataset.
  • "blob": (Optional) The binary content of the file to upload.

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

dataset = rag_object.create_dataset(name="kb_name")
dataset.upload_documents([{"display_name": "1.txt", "blob": "<BINARY_CONTENT_OF_THE_DOC>"}, {"display_name": "2.pdf", "blob": "<BINARY_CONTENT_OF_THE_DOC>"}])

Update document

Document.update(update_message:dict)

Updates configurations for the current document.

Parameters

update_message: dict[str, str|dict[]], Required

  • "name": str The name of the document to update.
  • "parser_config": dict[str, Any] The parsing configuration for the document:
    • "chunk_token_count": Defaults to 128.
    • "layout_recognize": Defaults to True.
    • "delimiter": Defaults to '\n!?。;!?'.
    • "task_page_size": Defaults to 12.
  • "chunk_method": str The parsing method to apply to the document.
    • "naive": General
    • "manual: Manual
    • "qa": Q&A
    • "table": Table
    • "paper": Paper
    • "book": Book
    • "laws": Laws
    • "presentation": Presentation
    • "picture": Picture
    • "one": One
    • "knowledge_graph": Knowledge Graph
    • "email": Email

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset=rag.list_datasets(id='id')
dataset=dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
doc.update([{"parser_config": {"chunk_token_count": 256}}, {"chunk_method": "manual"}])

Download document

Document.download() -> bytes

Downloads the current document from RAGFlow.

Returns

The downloaded document in bytes.

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="id")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
open("~/ragflow.txt", "wb+").write(doc.download())
print(doc)

List documents

Dataset.list_documents(id:str =None, keywords: str=None, offset: int=0, limit:int = 1024,order_by:str = "create_time", desc: bool = True) -> list[Document]

Retrieves a list of documents from the current dataset.

Parameters

id

The ID of the document to retrieve. Defaults to None.

keywords

The keywords to match document titles. Defaults to None.

offset

The beginning number of records for paging. Defaults to 0.

limit

Records number to return, -1 means all of them. Records number to return, -1 means all of them.

orderby

The field by which the documents should be sorted. Available options:

  • "create_time" (Default)
  • "update_time"

desc

Indicates whether the retrieved documents should be sorted in descending order. Defaults to True.

Returns

  • Success: A list of Document objects.
  • Failure: Exception.

A Document object contains the following attributes:

  • id Id of the retrieved document. Defaults to "".
  • thumbnail Thumbnail image of the retrieved document. Defaults to "".
  • knowledgebase_id Dataset ID related to the document. Defaults to "".
  • chunk_method Method used to parse the document. Defaults to "".
  • parser_config: ParserConfig Configuration object for the parser. Defaults to None.
  • source_type: Source type of the document. Defaults to "".
  • type: Type or category of the document. Defaults to "".
  • created_by: str Creator of the document. Defaults to "".
  • name Name or title of the document. Defaults to "".
  • size: int Size of the document in bytes or some other unit. Defaults to 0.
  • token_count: int Number of tokens in the document. Defaults to "".
  • chunk_count: int Number of chunks the document is split into. Defaults to 0.
  • progress: float Current processing progress as a percentage. Defaults to 0.0.
  • progress_msg: str Message indicating current progress status. Defaults to "".
  • process_begin_at: datetime Start time of the document processing. Defaults to None.
  • process_duation: float Duration of the processing in seconds or minutes. Defaults to 0.0.

Examples

from ragflow import RAGFlow

rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag.create_dataset(name="kb_1")

filename1 = "~/ragflow.txt"
blob=open(filename1 , "rb").read()
list_files=[{"name":filename1,"blob":blob}]
dataset.upload_documents(list_files)
for d in dataset.list_documents(keywords="rag", offset=0, limit=12):
    print(d)

Delete documents

DataSet.delete_documents(ids: list[str] = None)

Deletes specified documents or all documents from the current dataset.

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag.list_datasets(name="kb_1")
ds = ds[0]
ds.delete_documents(ids=["id_1","id_2"])

Parse documents

DataSet.async_parse_documents(document_ids:list[str]) -> None

Parameters

document_ids: list[str]

The IDs of the documents to parse.

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

#documents parse and cancel
rag = RAGFlow(API_KEY, HOST_ADDRESS)
ds = rag.create_dataset(name="dataset_name")
documents = [
    {'name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
    {'name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
    {'name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
]
ds.upload_documents(documents)
documents=ds.list_documents(keywords="test")
ids=[]
for document in documents:
    ids.append(document.id)
ds.async_parse_documents(ids)
print("Async bulk parsing initiated")
ds.async_cancel_parse_documents(ids)
print("Async bulk parsing cancelled")

Stop parsing documents

DataSet.async_cancel_parse_documents(document_ids:list[str])-> None

Parameters

document_ids: list[str]

The IDs of the documents to stop parsing.

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

#documents parse and cancel
rag = RAGFlow(API_KEY, HOST_ADDRESS)
ds = rag.create_dataset(name="dataset_name")
documents = [
    {'name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
    {'name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
    {'name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
]
ds.upload_documents(documents)
documents=ds.list_documents(keywords="test")
ids=[]
for document in documents:
    ids.append(document.id)
ds.async_parse_documents(ids)
print("Async bulk parsing initiated")
ds.async_cancel_parse_documents(ids)
print("Async bulk parsing cancelled")

List chunks

Document.list_chunks(keywords: str = None, offset: int = 0, limit: int = -1, id : str = None) -> list[Chunk]

Parameters

keywords

List chunks whose name has the given keywords. Defaults to None

offset

The beginning number of records for paging. Defaults to 1

limit

Records number to return. Default: 30

id

The ID of the chunk to retrieve. Default: None

Returns

list[chunk]

Examples

from ragflow import RAGFlow

rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag.list_datasets("123")
ds = ds[0]
ds.async_parse_documents(["wdfxb5t547d"])
for c in doc.list_chunks(keywords="rag", offset=0, limit=12):
    print(c)

Add chunk

Document.add_chunk(content:str) -> Chunk

Parameters

content: Required

The main text or information of the chunk.

important_keywords :list[str]

List the key terms or phrases that are significant or central to the chunk's content.

Returns

chunk

Examples

from ragflow import RAGFlow

rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag.list_datasets(id="123")
dtaset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")

Delete chunk

Document.delete_chunks(chunk_ids: list[str])

Parameters

chunk_ids:list[str]

A list of chunk_id.

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag.list_datasets(id="123")
ds = ds[0]
doc = ds.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
doc.delete_chunks(["id_1","id_2"])

Update chunk

Chunk.update(update_message: dict)

Updates the current chunk.

Parameters

update_message: dict[str, str|list[str]|int] Required

  • "content": str Content of the chunk.
  • "important_keywords": list[str] A list of key terms to attach to the chunk.
  • "available": int The chunk's availability status in the dataset.
    • 0: Unavailable
    • 1: Available

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="123")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
chunk.update({"content":"sdfx..."})

Retrieve chunks

RAGFlow.retrieve(question:str="", datasets:list[str]=None, document=list[str]=None, offset:int=1, limit:int=30, similarity_threshold:float=0.2, vector_similarity_weight:float=0.3, top_k:int=1024,rerank_id:str=None,keyword:bool=False,higlight:bool=False) -> list[Chunk]

Parameters

question: str Required

The user query or query keywords. Defaults to "".

datasets: list[str], Required

The datasets to search from.

document: list[str]

The documents to search from. None means no limitation. Defaults to None.

offset: int

The beginning point of retrieved chunks. Defaults to 0.

limit: int

The maximum number of chunks to return. Defaults to 6.

Similarity_threshold: float

The minimum similarity score. Defaults to 0.2.

similarity_threshold_weight: float

The weight of vector cosine similarity. Defaults to 0.3. If x represents the vector cosine similarity, then (1 - x) is the term similarity weight.

top_k: int

The number of chunks engaged in vector cosine computaton. Defaults to 1024.

rerank_id

The ID of the rerank model. Defaults to None.

keyword

Indicates whether keyword-based matching is enabled:

  • True: Enabled.
  • False: Disabled.

highlight:bool

Specifying whether to enable highlighting of matched terms in the results (True) or not (False).

Returns

  • Success: A list of Chunk objects representing the document chunks.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag_object.list_datasets(name="ragflow")
ds = ds[0]
name = 'ragflow_test.txt'
path = './test_data/ragflow_test.txt'
rag_object.create_document(ds, name=name, blob=open(path, "rb").read())
doc = ds.list_documents(name=name)
doc = doc[0]
ds.async_parse_documents([doc.id])
for c in rag_object.retrieve(question="What's ragflow?", 
             datasets=[ds.id], documents=[doc.id], 
             offset=1, limit=30, similarity_threshold=0.2, 
             vector_similarity_weight=0.3,
             top_k=1024
             ):
    print(c)

:::tip API GROUPING Chat Assistant Management :::

Create chat assistant

RAGFlow.create_chat(
    name: str, 
    avatar: str = "", 
    knowledgebases: list[str] = [], 
    llm: Chat.LLM = None, 
    prompt: Chat.Prompt = None
) -> Chat

Creates a chat assistant.

Parameters

The following shows the attributes of a Chat object:

name: Required

The name of the chat assistant. Defaults to "assistant".

avatar

Base64 encoding of the avatar. Defaults to "".

knowledgebases: list[str]

The IDs of the associated datasets. Defaults to [""].

llm

The llm of the created chat. Defaults to None. When the value is None, a dictionary with the following values will be generated as the default.

An LLM object contains the following attributes:

  • model_name, str
    The chat model name. If it is None, the user's default chat model will be returned.
  • temperature, float
    Controls the randomness of the model's predictions. A lower temperature increases the model's conficence in its responses; a higher temperature increases creativity and diversity. Defaults to 0.1.
  • top_p, float
    Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from. It focuses on the most likely words, cutting off the less probable ones. Defaults to 0.3
  • presence_penalty, float
    This discourages the model from repeating the same information by penalizing words that have already appeared in the conversation. Defaults to 0.2.
  • frequency penalty, float
    Similar to the presence penalty, this reduces the model’s tendency to repeat the same words frequently. Defaults to 0.7.
  • max_token, int
    This sets the maximum length of the model’s output, measured in the number of tokens (words or pieces of words). Defaults to 512.

Prompt

Instructions for the LLM to follow. A Prompt object contains the following attributes:

  • "similarity_threshold": float A similarity score to evaluate distance between two lines of text. It's weighted keywords similarity and vector cosine similarity. If the similarity between query and chunk is less than this threshold, the chunk will be filtered out. Defaults to 0.2.
  • "keywords_similarity_weight": float It's weighted keywords similarity and vector cosine similarity or rerank score (0~1). Defaults to 0.7.
  • "top_n": int Not all the chunks whose similarity score is above the 'similarity threshold' will be feed to LLMs. LLM can only see these 'Top N' chunks. Defaults to 8.
  • "variables": list[dict[]] If you use dialog APIs, the variables might help you chat with your clients with different strategies. The variables are used to fill in the 'System' part in prompt in order to give LLM a hint. The 'knowledge' is a very special variable which will be filled-in with the retrieved chunks. All the variables in 'System' should be curly bracketed. Defaults to [{"key": "knowledge", "optional": True}]
  • "rerank_model": str If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to "".
  • "empty_response": str If nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is retrieved, leave this blank. Defaults to None.
  • "opener": str The opening greeting for the user. Defaults to "Hi! I am your assistant, can I help you?".
  • "show_quote: bool Indicates whether the source of text should be displayed Defaults to True.
  • "prompt": str The prompt content. Defaults to You are an intelligent assistant. Please summarize the content of the dataset to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence "The answer you are looking for is not found in the knowledge base!" Answers need to consider chat history. Here is the knowledge base: {knowledge} The above is the knowledge base..

Returns

  • Success: A Chat object representing the chat assistant.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
kbs = rag.list_datasets(name="kb_1")
list_kb=[]
for kb in kbs:
    list_kb.append(kb.id)
assi = rag.create_chat("Miss R", knowledgebases=list_kb)

Update chat

Chat.update(update_message: dict)

Updates the current chat assistant.

Parameters

update_message: dict[str, Any], Required

  • "name": str The name of the chat assistant to update.
  • "avatar": str Base64 encoding of the avatar. Defaults to ""
  • "knowledgebases": list[str] datasets to update.
  • "llm": dict The LLM settings:
    • "model_name", str The chat model name.
    • "temperature", float Controls the randomness of the model's predictions.
    • "top_p", float Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from.
    • "presence_penalty", float This discourages the model from repeating the same information by penalizing words that have appeared in the conversation.
    • "frequency penalty", float Similar to presence penalty, this reduces the model’s tendency to repeat the same words.
    • "max_token", int This sets the maximum length of the model’s output, measured in the number of tokens (words or pieces of words).
  • "prompt" : Instructions for the LLM to follow.
    • "similarity_threshold": float A score to evaluate distance between two lines of text. It's weighted keywords similarity and vector cosine similarity. If the similarity between query and chunk is less than this threshold, the chunk will be filtered out. Defaults to 0.2.
    • "keywords_similarity_weight": float It's weighted keywords similarity and vector cosine similarity or rerank score (0~1). Defaults to 0.7.
    • "top_n": int Not all the chunks whose similarity score is above the 'similarity threshold' will be feed to LLMs. LLM can only see these 'Top N' chunks. Defaults to 8.
    • "variables": list[dict[]] If you use dialog APIs, the variables might help you chat with your clients with different strategies. The variables are used to fill in the 'System' part in prompt in order to give LLM a hint. The 'knowledge' is a very special variable which will be filled-in with the retrieved chunks. All the variables in 'System' should be curly bracketed. Defaults to [{"key": "knowledge", "optional": True}]
    • "rerank_model": str If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to "".
    • "empty_response": str If nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is retrieved, leave this blank. Defaults to None.
    • "opener": str The opening greeting for the user. Defaults to "Hi! I am your assistant, can I help you?".
    • "show_quote: bool Indicates whether the source of text should be displayed Defaults to True.
    • "prompt": str The prompt content. Defaults to You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence "The answer you are looking for is not found in the knowledge base!" Answers need to consider chat history. Here is the knowledge base: {knowledge} The above is the knowledge base..

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
knowledge_base = rag.list_datasets(name="kb_1")
assistant = rag.create_chat("Miss R", knowledgebases=knowledge_base)
assistant.update({"name": "Stefan", "llm": {"temperature": 0.8}, "prompt": {"top_n": 8}})

Delete chats

Deletes specified chat assistants.

RAGFlow.delete_chats(ids: list[str] = None)

Parameters

ids

IDs of the chat assistants to delete. If not specified, all chat assistants will be deleted.

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
rag.delete_chats(ids=["id_1","id_2"])

List chats

RAGFlow.list_chats(
    page: int = 1, 
    page_size: int = 1024, 
    orderby: str = "create_time", 
    desc: bool = True,
    id: str = None,
    name: str = None
) -> list[Chat]

Retrieves a list of chat assistants.

Parameters

page

Specifies the page on which the records will be displayed. Defaults to 1.

page_size

The number of records on each page. Defaults to 1024.

order_by

The attribute by which the results are sorted. Defaults to "create_time".

desc

Indicates whether the retrieved chat assistants should be sorted in descending order. Defaults to True.

id: string

The ID of the chat to retrieve. Defaults to None.

name: string

The name of the chat to retrieve. Defaults to None.

Returns

  • Success: A list of Chat objects.
  • Failure: Exception.

Examples

from ragflow import RAGFlow

rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
for assistant in rag.list_chats():
    print(assistant)

:::tip API GROUPING Chat-session APIs :::

Create session

Chat.create_session(name: str = "New session") -> Session

Creates a chat session.

Parameters

name

The name of the chat session to create.

Returns

  • Success: A Session object containing the following attributes:
    • id: str The auto-generated unique identifier of the created session.
    • name: str The name of the created session.
    • message: list[Message] The messages of the created session assistant. Default: [{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]
    • chat_id: str The ID of the associated chat assistant.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session()

Update session

Session.update(update_message: dict)

Updates the current session.

Parameters

update_message: dict[str, Any], Required

  • "name": str The name of the session to update.

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session("session_name")
session.update({"name": "updated_name"})

Chat

Session.ask(question: str, stream: bool = False) -> Optional[Message, iter[Message]]

Asks a question to start a conversation.

Parameters

question Required

The question to start an AI chat. Defaults to None.

stream

Indicates whether to output responses in a streaming way:

  • True: Enable streaming.
  • False: (Default) Disable streaming.

Returns

  • A Message object containing the response to the question if stream is set to False
  • An iterator containing multiple message objects (iter[Message]) if stream is set to True

The following shows the attributes of a Message object:

id: str

The auto-generated message ID.

content: str

The content of the message. Defaults to "Hi! I am your assistant, can I help you?".

reference: list[Chunk]

A list of Chunk objects representing references to the message, each containing the following attributes:

  • id str
    The chunk ID.
  • content str
    The content of the chunk.
  • image_id str
    The ID of the snapshot of the chunk.
  • document_id str
    The ID of the referenced document.
  • document_name str
    The name of the referenced document.
  • position list[str]
    The location information of the chunk within the referenced document.
  • knowledgebase_id str
    The ID of the dataset to which the referenced document belongs.
  • similarity float A composite similarity score of the chunk ranging from 0 to 1, with a higher value indicating greater similarity.
  • vector_similarity float
    A vector similarity score of the chunk ranging from 0 to 1, with a higher value indicating greater similarity between vector embeddings.
  • term_similarity float
    A keyword similarity score of the chunk ranging from 0 to 1, with a higher value indicating greater similarity between keywords.

Examples

from ragflow import RAGFlow

rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session()    

print("\n==================== Miss R =====================\n")
print(assistant.get_prologue())

while True:
    question = input("\n==================== User =====================\n> ")
    print("\n==================== Miss R =====================\n")
    
    cont = ""
    for ans in session.ask(question, stream=True):
        print(answer.content[len(cont):], end='', flush=True)
        cont = answer.content

List sessions

Chat.list_sessions(
    page: int = 1, 
    page_size: int = 1024, 
    orderby: str = "create_time", 
    desc: bool = True,
    id: str = None,
    name: str = None
) -> list[Session]

Lists sessions associated with the current chat assistant.

Parameters

page

Specifies the page on which records will be displayed. Defaults to 1.

page_size

The number of records on each page. Defaults to 1024.

orderby

The field by which the sessions should be sorted. Available options:

  • "create_time" (Default)
  • "update_time"

desc

Indicates whether the retrieved sessions should be sorted in descending order. Defaults to True.

id

The ID of the chat session to retrieve. Defaults to None.

name

The name of the chat to retrieve. Defaults to None.

Returns

  • Success: A list of Session objects associated with the current chat assistant.
  • Failure: Exception.

Examples

from ragflow import RAGFlow

rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag.list_chats(name="Miss R")
assistant = assistant[0]
for session in assistant.list_sessions():
    print(session)

Delete sessions

Chat.delete_sessions(ids:list[str] = None)

Deletes specified sessions or all sessions associated with the current chat assistant.

Parameters

ids

IDs of the sessions to delete. If not specified, all sessions associated with the current chat assistant will be deleted.

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag.list_chats(name="Miss R")
assistant = assistant[0]
assistant.delete_sessions(ids=["id_1","id_2"])