chatbot-arena-dataset-wrapper / src /text_classification_functions.py
reddgr's picture
first commit
87712ac
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
from datasets import Dataset
from tqdm import tqdm
import torch
import numpy as np
import os
from langdetect import detect
from sklearn.metrics import accuracy_score, f1_score, log_loss, confusion_matrix, ConfusionMatrixDisplay
import matplotlib.pyplot as plt
class Classifier:
def __init__(self, model_path, label_map, verbose = False):
self.model_path = model_path
self.classifier = pipeline("text-classification", model=model_path, tokenizer=model_path, device=0 if torch.cuda.is_available() else -1)
self.label_map = label_map
if verbose:
self.print_device_information()
def print_device_information(self):
# Check device information
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
device_properties = torch.cuda.get_device_properties(0) if device.type == "cuda" else "CPU Device"
print(f"Using device: {device}")
if device.type == "cuda":
print(f"Device Name: {device_properties.name}")
# print(f"Compute Capability: {device_properties.major}.{device_properties.minor}")
print(f"Total Memory: {device_properties.total_memory / 1e9:.2f} GB")
def tokenize_and_trim(self, text):
max_length = self.classifier.tokenizer.model_max_length
inputs = self.classifier.tokenizer(text, truncation=True, max_length=max_length, return_tensors="tf")
return self.classifier.tokenizer.decode(inputs['input_ids'][0], skip_special_tokens=True)
def classify_dataframe_column(self, df, target_column, feature_suffix):
tqdm.pandas()
df[f'trimmed_{target_column}'] = df[target_column].progress_apply(self.tokenize_and_trim)
results = []
for text in tqdm(df[f'trimmed_{target_column}'].tolist(), desc="Classifying"):
result = self.classifier(text)
results.append(result[0])
df[f'pred_label_{feature_suffix}'] = [self.label_map[int(result['label'].split('_')[-1])] for result in results]
df[f'prob_{feature_suffix}'] = [result['score'] for result in results]
df.drop(columns=[f'trimmed_{target_column}'], inplace=True)
return df
def test_model_predictions(self, df, target_column):
"""
Tests model predictions on a given dataframe column and computes evaluation metrics.
Args:
df (pd.DataFrame): Input dataframe containing the data.
target_column (str): The name of the column to classify.
Requirements:
- The dataframe must include a 'label' column for comparison with predictions.
Returns:
dict: A dictionary containing accuracy, F1 score, cross-entropy loss,
and the confusion matrix.
"""
# Convert pandas dataframe to Dataset
dataset = Dataset.from_pandas(df)
# Define a processing function for tokenization and classification
def process_data(batch):
trimmed_text = self.tokenize_and_trim(batch[target_column])
result = self.classifier(trimmed_text)
score = result[0]['score']
label = result[0]['label']
return {
'trimmed_text': trimmed_text,
'predicted_prob_0': score if label == 'LABEL_0' else 1 - score,
'predicted_prob_1': 1 - score if label == 'LABEL_0' else score,
}
# Apply processing with map
processed_dataset = dataset.map(process_data, batched=False)
# Convert back to pandas dataframe
processed_df = processed_dataset.to_pandas()
# Extract predicted probabilities and true labels
predicted_probs = processed_df[['predicted_prob_0', 'predicted_prob_1']].values
true_labels = df['label'].values
# Calculate metrics
accuracy = accuracy_score(true_labels, np.argmax(predicted_probs, axis=1))
f1 = f1_score(true_labels, np.argmax(predicted_probs, axis=1), average='weighted')
cross_entropy_loss = log_loss(true_labels, predicted_probs)
# Print metrics
print(f"Accuracy: {accuracy:.4f}")
print(f"F1 Score: {f1:.4f}")
print(f"Cross Entropy Loss: {cross_entropy_loss:.4f}")
# Confusion matrix
cm = confusion_matrix(true_labels, np.argmax(predicted_probs, axis=1))
cmap = plt.cm.Blues
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[0, 1])
disp.plot(cmap=cmap)
plt.show()
# Return metrics and probabilities for further inspection
return {
"accuracy": accuracy,
"f1_score": f1,
"cross_entropy_loss": cross_entropy_loss,
"confusion_matrix": cm,
"predicted_probs": predicted_probs # Include reconstructed probabilities
}
class LanguageDetector:
def __init__(self, dataframe):
"""
Initializes the LanguageDetector with the provided DataFrame.
"""
self.dataframe = dataframe
def detect_language_dataframe_column(self, target_column):
"""
Detects the language of text in the specified column using langdetect and adds
a 'detected_language' column to the DataFrame.
"""
def detect_language(text):
try:
return detect(text)
except Exception:
return None
tqdm.pandas()
self.dataframe['detected_language'] = self.dataframe[target_column].progress_apply(detect_language)
return self.dataframe
# Classifier with Tensorflow backend
class TensorflowClassifier(Classifier):
def __init__(self, model_path, label_map, verbose=False):
super().__init__(model_path, label_map, verbose=False)
self.is_tensorflow = False
if self._is_tensorflow_model(model_path):
self.model = tf.keras.models.load_model(model_path)
self.tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") # Adjust as per training tokenizer
self.is_tensorflow = True
if verbose:
print("Loaded TensorFlow model.")
else:
if verbose:
print("Fallback to HuggingFace pipeline.")
def _is_tensorflow_model(self, model_path):
return os.path.isdir(model_path) and os.path.exists(os.path.join(model_path, "saved_model.pb"))
def classify(self, text):
if self.is_tensorflow:
inputs = self.tokenizer(text, truncation=True, max_length=self.tokenizer.model_max_length, return_tensors="np")
logits = self.model.predict([inputs["input_ids"], inputs["attention_mask"]])
probabilities = tf.nn.softmax(logits).numpy()
label_id = np.argmax(probabilities, axis=-1).item()
return {
"label": f"LABEL_{label_id}",
"score": probabilities.max()
}
else:
return self.classifier(text)[0]
def classify_dataframe_column(self, df, target_column, feature_suffix):
tqdm.pandas()
df[f'trimmed_{target_column}'] = df[target_column].progress_apply(
lambda text: self.tokenizer.decode(
self.tokenizer(text, truncation=True, max_length=self.tokenizer.model_max_length)["input_ids"],
skip_special_tokens=True
)
)
if self.is_tensorflow:
results = [self.classify(text) for text in df[f'trimmed_{target_column}']]
else:
results = [self.classifier(text)[0] for text in df[f'trimmed_{target_column}']]
df[f'pred_label_{feature_suffix}'] = [
self.label_map[int(result['label'].split('_')[-1])] for result in results
]
df[f'prob_{feature_suffix}'] = [result['score'] for result in results]
df.drop(columns=[f'trimmed_{target_column}'], inplace=True)
return df
class ZeroShotClassifier(Classifier):
def __init__(self, model_path, tokenizer_path, candidate_labels):
self.model_path = model_path
self.candidate_labels = candidate_labels
self.classifier = pipeline("zero-shot-classification", model=model_path, tokenizer=tokenizer_path, clean_up_tokenization_spaces=True, device=0 if torch.cuda.is_available() else -1)
def classify_text(self, text, top_n=None, multi_label=False):
"""
Classify a single text using zero-shot classification with truncated scores.
:param text: The text to classify
:param multi_label: Whether to allow multi-label classification
:return: Classification result as a dictionary with scores truncated to 3 decimals
"""
classification_output = self.classifier(text, self.candidate_labels, multi_label=multi_label, clean_up_tokenization_spaces=True)
classification_output['scores'] = [round(score, 3) for score in classification_output['scores']]
if top_n is not None:
classification_output = {
'sequence': classification_output['sequence'],
'labels': classification_output['labels'][:top_n],
'scores': classification_output['scores'][:top_n]
}
return classification_output
def classify_dataframe_column(self, df, target_column, feature_suffix, multi_label=False):
"""
Classify the contents of a dataframe column using zero-shot classification.
:param df: The dataframe to process
:param target_column: The column containing text to classify
:param feature_suffix: Suffix for the output columns
:param multi_label: Whether to allow multi-label classification
:return: The dataframe with classification results
"""
tqdm.pandas()
# Apply the classify_text method to each row
results = df[target_column].progress_apply(
lambda text: self.classify_text(text, multi_label=multi_label)
)
# Extract and store results
df[f'top_class_{feature_suffix}'] = results.apply(lambda res: res['labels'][0])
df[f'top_score_{feature_suffix}'] = results.apply(lambda res: res['scores'][0])
df[f'full_results_{feature_suffix}'] = results.apply(lambda res: list(zip(res['labels'], res['scores'])))
return df
def test_zs_predictions(self, df, target_column='text', true_classes_column='category', plot_conf_matrix=True):
"""
Tests model predictions on a given dataset column using the zero-shot classification pipeline.
Args:
df (pd.DataFrame): Input dataframe containing texts for zero-shot classification.
target_column (str): The name of the column containing text to classify.
true_classes_column (str): The column containing annotated classes.
Returns:
dict: A dictionary containing accuracy, F1 score, and confusion matrix.
"""
# Progress bar for classification
tqdm.pandas(desc=f"Zero-shot classification with {self.model_path}")
# Function to classify each row
def classify_row(row):
classification_output = self.classifier(
row[target_column],
self.candidate_labels,
multi_label=False,
clean_up_tokenization_spaces=True,
)
return classification_output["labels"][0]
# Apply classification with progress bar
df = df.copy()
df.loc[:, 'predicted_class'] = df.progress_apply(classify_row, axis=1)
# Extract true and predicted classes
true_classes = df[true_classes_column]
predicted_classes = df['predicted_class']
# Compute metrics
accuracy = accuracy_score(true_classes, predicted_classes)
f1 = f1_score(true_classes, predicted_classes, average="macro")
cm = confusion_matrix(true_classes, predicted_classes, labels=self.candidate_labels)
if plot_conf_matrix:
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=self.candidate_labels)
fig, ax = plt.subplots(figsize=(4, 4))
disp.plot(cmap=plt.cm.Blues, ax=ax, colorbar=False)
ax.set_title(f"Zero-shot classification with {self.model_path}", fontsize=10)
ax.set_xlabel("Predicted label", fontsize=8)
ax.set_ylabel("True label", fontsize=8)
ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha="right", fontsize=8)
ax.set_yticklabels(ax.get_yticklabels(), fontsize=8)
fig.text(
0.5, 0.01,
f"Accuracy: {accuracy:.4f} | F1 Score: {f1:.4f}",
ha="center",
fontsize=10
)
plt.tight_layout(rect=[0, 0.05, 1, 1]) # Adjust bottom margin
plt.show()
return {
"accuracy": accuracy,
"f1_score": f1,
"confusion_matrix": cm,
"detailed_results": df.to_dict(), # Full dataframe with predictions
}
def test_zs_predictions_with_dataset(self, df, target_column='text', true_classes_column='category', plot_conf_matrix=True):
dataset = Dataset.from_pandas(df)
def classify_text(batch):
classification_output = self.classifier(
batch[target_column],
self.candidate_labels,
multi_label=False,
clean_up_tokenization_spaces=True,
)
return {
"predicted_class": classification_output["labels"][0],
"predicted_scores": classification_output["scores"],
}
# Apply classification to the dataset
classified_dataset = dataset.map(classify_text, batched=False)
# classified_dataset = dataset.map(classify_text, batched=True, batch_size=16)
# Extract true and predicted classes
true_classes = classified_dataset[true_classes_column]
predicted_classes = classified_dataset["predicted_class"]
# Compute metrics
accuracy = accuracy_score(true_classes, predicted_classes)
f1 = f1_score(true_classes, predicted_classes, average="macro")
# Print metrics
print(f"Accuracy: {accuracy:.4f}")
print(f"F1 Score: {f1:.4f}")
# Generate confusion matrix:
cm = confusion_matrix(true_classes, predicted_classes, labels=self.candidate_labels)
if plot_conf_matrix:
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=self.candidate_labels)
fig, ax = plt.subplots(figsize=(6, 6))
disp.plot(cmap=plt.cm.Blues, ax=ax)
plt.xticks(rotation=45, ha="right")
plt.show()
# Return metrics for further inspection
return {
"accuracy": accuracy,
"f1_score": f1,
"confusion_matrix": cm,
"detailed_results": classified_dataset.to_dict(),
}
class MetricsComparison:
def __init__(self, base_classifier, fine_tuned_classifier, base_metrics, fine_tuned_metrics):
self.base_classifier = base_classifier
self.fine_tuned_classifier = fine_tuned_classifier
self.base_metrics = base_metrics
self.fine_tuned_metrics = fine_tuned_metrics
def compare_conf_matrices(self):
fig, axes = plt.subplots(1, 2, figsize=(12, 6))
# Plot for base_classifier (left)
disp1 = ConfusionMatrixDisplay(confusion_matrix=self.base_metrics["confusion_matrix"],
display_labels=self.base_classifier.candidate_labels)
disp1.plot(cmap=plt.cm.Blues, ax=axes[0], colorbar=False)
axes[0].set_title(f"Zero-shot classification with {self.base_classifier.model_path}", fontsize=10)
axes[0].set_xlabel("Predicted class", fontsize=8)
axes[0].set_ylabel("True class", fontsize=8)
axes[0].set_xticklabels(axes[0].get_xticklabels(), rotation=45, ha="right", fontsize=8)
axes[0].set_yticklabels(axes[0].get_yticklabels(), fontsize=8)
fig.text(
0.25, 0.01,
f"Accuracy: {self.base_metrics['accuracy']:.4f} | F1 Score: {self.base_metrics['f1_score']:.4f}",
ha="center",
fontsize=10
)
# Plot for zs_classifier (fine-tuned) (right)
disp2 = ConfusionMatrixDisplay(confusion_matrix=self.fine_tuned_metrics["confusion_matrix"],
display_labels=self.fine_tuned_classifier.candidate_labels)
disp2.plot(cmap=plt.cm.Blues, ax=axes[1], colorbar=False)
axes[1].set_title(f"ZS classification with {self.fine_tuned_classifier.model_path}", fontsize=10)
axes[1].set_xlabel("Predicted class", fontsize=8)
axes[1].set_ylabel("True class", fontsize=8)
axes[1].set_xticklabels(axes[1].get_xticklabels(), rotation=45, ha="right", fontsize=8)
axes[1].set_yticklabels(axes[1].get_yticklabels(), fontsize=8)
fig.text(
0.75, 0.01,
f"Accuracy: {self.fine_tuned_metrics['accuracy']:.4f} | F1 Score: {self.fine_tuned_metrics['f1_score']:.4f}",
ha="center",
fontsize=10
)
plt.tight_layout(rect=[0, 0.05, 1, 0.95])
plt.show()