File size: 17,453 Bytes
87712ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
from datasets import Dataset
from tqdm import tqdm
import torch
import numpy as np
import os
from langdetect import detect
from sklearn.metrics import accuracy_score, f1_score, log_loss, confusion_matrix, ConfusionMatrixDisplay
import matplotlib.pyplot as plt

class Classifier:
    def __init__(self, model_path, label_map, verbose = False):
        self.model_path = model_path
        self.classifier = pipeline("text-classification", model=model_path, tokenizer=model_path, device=0 if torch.cuda.is_available() else -1)
        self.label_map = label_map
        if verbose: 
            self.print_device_information()
    
    def print_device_information(self):
        # Check device information
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        device_properties = torch.cuda.get_device_properties(0) if device.type == "cuda" else "CPU Device"

        print(f"Using device: {device}")
        if device.type == "cuda":
            print(f"Device Name: {device_properties.name}")
            # print(f"Compute Capability: {device_properties.major}.{device_properties.minor}")
            print(f"Total Memory: {device_properties.total_memory / 1e9:.2f} GB")

    def tokenize_and_trim(self, text):
        max_length = self.classifier.tokenizer.model_max_length
        inputs = self.classifier.tokenizer(text, truncation=True, max_length=max_length, return_tensors="tf")
        return self.classifier.tokenizer.decode(inputs['input_ids'][0], skip_special_tokens=True)


    def classify_dataframe_column(self, df, target_column, feature_suffix):

        tqdm.pandas()
        df[f'trimmed_{target_column}'] = df[target_column].progress_apply(self.tokenize_and_trim)

        results = []
        for text in tqdm(df[f'trimmed_{target_column}'].tolist(), desc="Classifying"):
            result = self.classifier(text)
            results.append(result[0])

        df[f'pred_label_{feature_suffix}'] = [self.label_map[int(result['label'].split('_')[-1])] for result in results]
        df[f'prob_{feature_suffix}'] = [result['score'] for result in results]
        df.drop(columns=[f'trimmed_{target_column}'], inplace=True)
        return df
    
    def test_model_predictions(self, df, target_column):
        """
        Tests model predictions on a given dataframe column and computes evaluation metrics.

        Args:
            df (pd.DataFrame): Input dataframe containing the data.
            target_column (str): The name of the column to classify.

        Requirements:
            - The dataframe must include a 'label' column for comparison with predictions.

        Returns:
            dict: A dictionary containing accuracy, F1 score, cross-entropy loss, 
                and the confusion matrix.
        """
        # Convert pandas dataframe to Dataset
        dataset = Dataset.from_pandas(df)

        # Define a processing function for tokenization and classification
        def process_data(batch):
            trimmed_text = self.tokenize_and_trim(batch[target_column])
            result = self.classifier(trimmed_text)
            score = result[0]['score']
            label = result[0]['label']
            return {
                'trimmed_text': trimmed_text,
                'predicted_prob_0': score if label == 'LABEL_0' else 1 - score,
                'predicted_prob_1': 1 - score if label == 'LABEL_0' else score,
            }

        # Apply processing with map
        processed_dataset = dataset.map(process_data, batched=False)

        # Convert back to pandas dataframe
        processed_df = processed_dataset.to_pandas()

        # Extract predicted probabilities and true labels
        predicted_probs = processed_df[['predicted_prob_0', 'predicted_prob_1']].values
        true_labels = df['label'].values

        # Calculate metrics
        accuracy = accuracy_score(true_labels, np.argmax(predicted_probs, axis=1))
        f1 = f1_score(true_labels, np.argmax(predicted_probs, axis=1), average='weighted')
        cross_entropy_loss = log_loss(true_labels, predicted_probs)

        # Print metrics
        print(f"Accuracy: {accuracy:.4f}")
        print(f"F1 Score: {f1:.4f}")
        print(f"Cross Entropy Loss: {cross_entropy_loss:.4f}")

        # Confusion matrix
        cm = confusion_matrix(true_labels, np.argmax(predicted_probs, axis=1))
        cmap = plt.cm.Blues
        disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[0, 1])
        disp.plot(cmap=cmap)
        plt.show()

        # Return metrics and probabilities for further inspection
        return {
            "accuracy": accuracy,
            "f1_score": f1,
            "cross_entropy_loss": cross_entropy_loss,
            "confusion_matrix": cm,
            "predicted_probs": predicted_probs  # Include reconstructed probabilities
        }
    
    
class LanguageDetector:
    def __init__(self, dataframe):
        """
        Initializes the LanguageDetector with the provided DataFrame.
        """
        self.dataframe = dataframe

    def detect_language_dataframe_column(self, target_column):
        """
        Detects the language of text in the specified column using langdetect and adds 
        a 'detected_language' column to the DataFrame.
        """
        def detect_language(text):
            try:
                return detect(text)
            except Exception:
                return None

        tqdm.pandas()
        self.dataframe['detected_language'] = self.dataframe[target_column].progress_apply(detect_language)

        return self.dataframe
    

# Classifier with Tensorflow backend
class TensorflowClassifier(Classifier):
    def __init__(self, model_path, label_map, verbose=False):
        super().__init__(model_path, label_map, verbose=False)
        self.is_tensorflow = False
        
        if self._is_tensorflow_model(model_path):
            self.model = tf.keras.models.load_model(model_path)
            self.tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")  # Adjust as per training tokenizer
            self.is_tensorflow = True
            if verbose:
                print("Loaded TensorFlow model.")
        else:
            if verbose:
                print("Fallback to HuggingFace pipeline.")

    def _is_tensorflow_model(self, model_path):
        return os.path.isdir(model_path) and os.path.exists(os.path.join(model_path, "saved_model.pb"))

    def classify(self, text):
        if self.is_tensorflow:
            inputs = self.tokenizer(text, truncation=True, max_length=self.tokenizer.model_max_length, return_tensors="np")
            logits = self.model.predict([inputs["input_ids"], inputs["attention_mask"]])
            probabilities = tf.nn.softmax(logits).numpy()
            label_id = np.argmax(probabilities, axis=-1).item()
            return {
                "label": f"LABEL_{label_id}",
                "score": probabilities.max()
            }
        else:
            return self.classifier(text)[0]

    def classify_dataframe_column(self, df, target_column, feature_suffix):
        tqdm.pandas()
        df[f'trimmed_{target_column}'] = df[target_column].progress_apply(
            lambda text: self.tokenizer.decode(
                self.tokenizer(text, truncation=True, max_length=self.tokenizer.model_max_length)["input_ids"],
                skip_special_tokens=True
            )
        )

        if self.is_tensorflow:
            results = [self.classify(text) for text in df[f'trimmed_{target_column}']]
        else:
            results = [self.classifier(text)[0] for text in df[f'trimmed_{target_column}']]

        df[f'pred_label_{feature_suffix}'] = [
            self.label_map[int(result['label'].split('_')[-1])] for result in results
        ]
        df[f'prob_{feature_suffix}'] = [result['score'] for result in results]
        df.drop(columns=[f'trimmed_{target_column}'], inplace=True)
        return df


class ZeroShotClassifier(Classifier):

    def __init__(self, model_path, tokenizer_path, candidate_labels):
        self.model_path = model_path
        self.candidate_labels = candidate_labels
        self.classifier = pipeline("zero-shot-classification", model=model_path, tokenizer=tokenizer_path, clean_up_tokenization_spaces=True, device=0 if torch.cuda.is_available() else -1)

    def classify_text(self, text, top_n=None, multi_label=False):
        """
        Classify a single text using zero-shot classification with truncated scores.

        :param text: The text to classify
        :param multi_label: Whether to allow multi-label classification
        :return: Classification result as a dictionary with scores truncated to 3 decimals
        """
        classification_output = self.classifier(text, self.candidate_labels, multi_label=multi_label, clean_up_tokenization_spaces=True)
        classification_output['scores'] = [round(score, 3) for score in classification_output['scores']]
        if top_n is not None:
            classification_output = {
                'sequence': classification_output['sequence'],
                'labels': classification_output['labels'][:top_n],
                'scores': classification_output['scores'][:top_n]
            }
        return classification_output

    def classify_dataframe_column(self, df, target_column, feature_suffix, multi_label=False):
        """
        Classify the contents of a dataframe column using zero-shot classification.

        :param df: The dataframe to process
        :param target_column: The column containing text to classify
        :param feature_suffix: Suffix for the output columns
        :param multi_label: Whether to allow multi-label classification
        :return: The dataframe with classification results
        """
        tqdm.pandas()

        # Apply the classify_text method to each row
        results = df[target_column].progress_apply(
            lambda text: self.classify_text(text, multi_label=multi_label)
        )

        # Extract and store results
        df[f'top_class_{feature_suffix}'] = results.apply(lambda res: res['labels'][0])
        df[f'top_score_{feature_suffix}'] = results.apply(lambda res: res['scores'][0])
        df[f'full_results_{feature_suffix}'] = results.apply(lambda res: list(zip(res['labels'], res['scores'])))

        return df
    
    def test_zs_predictions(self, df, target_column='text', true_classes_column='category', plot_conf_matrix=True):
        """
        Tests model predictions on a given dataset column using the zero-shot classification pipeline.

        Args:
            df (pd.DataFrame): Input dataframe containing texts for zero-shot classification.
            target_column (str): The name of the column containing text to classify.
            true_classes_column (str): The column containing annotated classes.

        Returns:
            dict: A dictionary containing accuracy, F1 score, and confusion matrix.
        """
        # Progress bar for classification
        tqdm.pandas(desc=f"Zero-shot classification with {self.model_path}")
        
        # Function to classify each row
        def classify_row(row):
            classification_output = self.classifier(
                row[target_column],
                self.candidate_labels,
                multi_label=False,
                clean_up_tokenization_spaces=True,
            )
            return classification_output["labels"][0]

        # Apply classification with progress bar
        df = df.copy()
        df.loc[:, 'predicted_class'] = df.progress_apply(classify_row, axis=1)
        
        # Extract true and predicted classes
        true_classes = df[true_classes_column]
        predicted_classes = df['predicted_class']

        # Compute metrics
        accuracy = accuracy_score(true_classes, predicted_classes)
        f1 = f1_score(true_classes, predicted_classes, average="macro")
        cm = confusion_matrix(true_classes, predicted_classes, labels=self.candidate_labels)
        if plot_conf_matrix:
            disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=self.candidate_labels)
            fig, ax = plt.subplots(figsize=(4, 4))
            disp.plot(cmap=plt.cm.Blues, ax=ax, colorbar=False)
            ax.set_title(f"Zero-shot classification with {self.model_path}", fontsize=10)
            ax.set_xlabel("Predicted label", fontsize=8) 
            ax.set_ylabel("True label", fontsize=8)   

            ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha="right", fontsize=8)
            ax.set_yticklabels(ax.get_yticklabels(), fontsize=8)

            fig.text(
                0.5, 0.01, 
                f"Accuracy: {accuracy:.4f} | F1 Score: {f1:.4f}",
                ha="center",
                fontsize=10
            )
            plt.tight_layout(rect=[0, 0.05, 1, 1])  # Adjust bottom margin
            plt.show()

        return {
            "accuracy": accuracy,
            "f1_score": f1,
            "confusion_matrix": cm,
            "detailed_results": df.to_dict(),  # Full dataframe with predictions
        }
    
    def test_zs_predictions_with_dataset(self, df, target_column='text', true_classes_column='category', plot_conf_matrix=True):
        dataset = Dataset.from_pandas(df)
        def classify_text(batch):
            classification_output = self.classifier(
                batch[target_column],
                self.candidate_labels,
                multi_label=False,
                clean_up_tokenization_spaces=True,
            )
            return {
                "predicted_class": classification_output["labels"][0],
                "predicted_scores": classification_output["scores"],
            }

        # Apply classification to the dataset
        classified_dataset = dataset.map(classify_text, batched=False)
        # classified_dataset = dataset.map(classify_text, batched=True, batch_size=16)

        # Extract true and predicted classes
        true_classes = classified_dataset[true_classes_column]
        predicted_classes = classified_dataset["predicted_class"]

        # Compute metrics
        accuracy = accuracy_score(true_classes, predicted_classes)
        f1 = f1_score(true_classes, predicted_classes, average="macro")

        # Print metrics
        print(f"Accuracy: {accuracy:.4f}")
        print(f"F1 Score: {f1:.4f}")

        # Generate confusion matrix:
        cm = confusion_matrix(true_classes, predicted_classes, labels=self.candidate_labels)
        if plot_conf_matrix:
            disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=self.candidate_labels)
            fig, ax = plt.subplots(figsize=(6, 6))  
            disp.plot(cmap=plt.cm.Blues, ax=ax)
            plt.xticks(rotation=45, ha="right") 
            plt.show()

        # Return metrics for further inspection
        return {
            "accuracy": accuracy,
            "f1_score": f1,
            "confusion_matrix": cm,
            "detailed_results": classified_dataset.to_dict(), 
        }
    
class MetricsComparison: 
    def __init__(self, base_classifier, fine_tuned_classifier, base_metrics, fine_tuned_metrics):
        self.base_classifier = base_classifier
        self.fine_tuned_classifier = fine_tuned_classifier
        self.base_metrics = base_metrics
        self.fine_tuned_metrics = fine_tuned_metrics

    def compare_conf_matrices(self):
        fig, axes = plt.subplots(1, 2, figsize=(12, 6))
        # Plot for base_classifier (left)
        disp1 = ConfusionMatrixDisplay(confusion_matrix=self.base_metrics["confusion_matrix"], 
                                       display_labels=self.base_classifier.candidate_labels)
        disp1.plot(cmap=plt.cm.Blues, ax=axes[0], colorbar=False)
        axes[0].set_title(f"Zero-shot classification with {self.base_classifier.model_path}", fontsize=10)
        axes[0].set_xlabel("Predicted class", fontsize=8)
        axes[0].set_ylabel("True class", fontsize=8)
        axes[0].set_xticklabels(axes[0].get_xticklabels(), rotation=45, ha="right", fontsize=8)
        axes[0].set_yticklabels(axes[0].get_yticklabels(), fontsize=8)

        fig.text(
            0.25, 0.01, 
            f"Accuracy: {self.base_metrics['accuracy']:.4f} | F1 Score: {self.base_metrics['f1_score']:.4f}",
            ha="center",
            fontsize=10
        )

        # Plot for zs_classifier (fine-tuned) (right)
        disp2 = ConfusionMatrixDisplay(confusion_matrix=self.fine_tuned_metrics["confusion_matrix"], 
                                       display_labels=self.fine_tuned_classifier.candidate_labels)
        disp2.plot(cmap=plt.cm.Blues, ax=axes[1], colorbar=False)
        axes[1].set_title(f"ZS classification with {self.fine_tuned_classifier.model_path}", fontsize=10)
        axes[1].set_xlabel("Predicted class", fontsize=8)
        axes[1].set_ylabel("True class", fontsize=8)
        axes[1].set_xticklabels(axes[1].get_xticklabels(), rotation=45, ha="right", fontsize=8)
        axes[1].set_yticklabels(axes[1].get_yticklabels(), fontsize=8)

        fig.text(
            0.75, 0.01, 
            f"Accuracy: {self.fine_tuned_metrics['accuracy']:.4f} | F1 Score: {self.fine_tuned_metrics['f1_score']:.4f}",
            ha="center",
            fontsize=10
        )

        plt.tight_layout(rect=[0, 0.05, 1, 0.95])
        plt.show()