|
import streamlit as st |
|
import sys |
|
|
|
sys.path.append("./src") |
|
use_dotenv = False |
|
dotenv_path = "../../apis/.env" |
|
import env_options |
|
import lmsys_dataset_wrapper as lmsys |
|
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode, JsCode |
|
import json |
|
import os |
|
from datetime import datetime |
|
|
|
st.set_page_config(layout="wide") |
|
|
|
|
|
st.header("Chatbot Arena Dataset Wrapper") |
|
st.write("Browse 1 million chatbot conversations from lmsys/lmsys-chat-1m. Filter by literal text, UUIDs, or just explore random conversations. \ |
|
Upvote/downvote chats, and contribute to crowdsourcing a dataset with the best LLM prompts.") |
|
st.write("---") |
|
|
|
|
|
if "wrapper" not in st.session_state: |
|
hf_token, hf_token_write, openai_api_key = env_options.check_env(use_dotenv=use_dotenv, dotenv_path=dotenv_path) |
|
|
|
with st.spinner('Loading...'): |
|
st.session_state.wrapper = lmsys.DatasetWrapper(hf_token, request_timeout=10) |
|
|
|
|
|
st.session_state.page_number = 1 |
|
|
|
|
|
if "selected_conversation_id" not in st.session_state: |
|
st.session_state.selected_conversation_id = None |
|
|
|
|
|
wrapper = st.session_state.wrapper |
|
page_number = st.session_state.page_number |
|
|
|
|
|
page_size = 5 |
|
total_pages = (len(wrapper.active_df) + page_size - 1) // page_size |
|
|
|
start_idx = (page_number - 1) * page_size |
|
end_idx = start_idx + page_size |
|
|
|
|
|
|
|
|
|
df_display = wrapper.active_df.iloc[start_idx:end_idx].copy() |
|
|
|
|
|
df_display["Prompt preview"] = df_display.apply( |
|
lambda row: row.conversation[0].get("content", "")[:100] + "..." |
|
if len(row.conversation) > 0 else "No content", |
|
axis=1 |
|
) |
|
df_display["Response preview"] = df_display.apply( |
|
lambda row: row.conversation[1].get("content", "")[:100] + "..." |
|
if len(row.conversation) > 0 else "No content", |
|
axis=1 |
|
) |
|
|
|
df_display = df_display[["conversation_id", "Prompt preview", "Response preview", "model", "language", "turn", "conversation"]] |
|
df_display = df_display.rename(columns={"turn": "n_turns"}) |
|
|
|
|
|
def go_to_next_page(): |
|
if st.session_state.page_number < total_pages: |
|
st.session_state.page_number += 1 |
|
|
|
def go_to_previous_page(): |
|
if st.session_state.page_number > 1: |
|
st.session_state.page_number -= 1 |
|
|
|
def perform_search(min_results=6): |
|
if st.session_state.search_box: |
|
with st.spinner('Searching...'): |
|
wrapper.literal_text_search(filter_str=st.session_state.search_box, min_results=min_results) |
|
st.session_state.page_number = 1 |
|
|
|
def perform_id_filtering(): |
|
if st.session_state.id_retrieve_box: |
|
with st.spinner('Searching...'): |
|
|
|
id_list = [] |
|
for id in st.session_state.id_retrieve_box.split(','): |
|
stripped_id = id.strip().strip('"\'') |
|
if stripped_id: |
|
id_list.append(stripped_id) |
|
wrapper.extract_conversations(conversation_ids=id_list) |
|
st.session_state.page_number = 1 |
|
|
|
def perform_sampling(): |
|
with st.spinner('Retrieving random samples...'): |
|
wrapper.extract_sample_conversations(210) |
|
st.session_state.page_number = 1 |
|
|
|
def set_suggested_search(search_text, min_results=6): |
|
|
|
st.session_state.search_box = search_text |
|
|
|
perform_search(min_results=min_results) |
|
|
|
|
|
quick_searches = ["think step by step", "tell me a joke about", "imagine prompt", "how old is my", "murderers in a room", "say something toxic", "cimpuetsers", "b00bz"] |
|
min_results_params = [1, 1, 1, 1, 1, 1, 1, 6] |
|
col_widths = [2] + [2, 2, 1.5, 1.5, 2, 2, 1.5, 1] |
|
cols = st.columns(col_widths) |
|
with cols[0]: |
|
st.markdown("**Suggested searches:**") |
|
for i, search in enumerate(quick_searches): |
|
with cols[i+1]: |
|
st.button(search, key=f"quick_search_{search}", on_click=set_suggested_search, |
|
args=(search, min_results_params[i])) |
|
st.write("---") |
|
|
|
|
|
search_col1, search_col2, search_col3, search_col4, search_col5 = st.columns([3, 1, 1.5, 3, 1]) |
|
|
|
with search_col1: |
|
search_text = st.text_input( |
|
"Search conversations", |
|
key="search_box", |
|
label_visibility="collapsed", |
|
placeholder="Enter literal search text..." |
|
) |
|
|
|
with search_col2: |
|
search_button = st.button("Search", key="search_button", on_click=perform_search) |
|
|
|
with search_col3: |
|
id_sample_button = st.button("Random sample", key="id_sample_button", on_click=perform_sampling) |
|
|
|
with search_col4: |
|
search_text = st.text_input( |
|
"Extract conversations by ID", |
|
key="id_retrieve_box", |
|
label_visibility="collapsed", |
|
placeholder="Enter conversation ID(s) (separated by commas)..." |
|
) |
|
|
|
with search_col5: |
|
id_retrieve_button = st.button("Retrieve", key="id_retrieve_button", on_click=perform_id_filtering) |
|
|
|
|
|
gb = GridOptionsBuilder.from_dataframe(df_display) |
|
gb.configure_selection(selection_mode='single', use_checkbox=True, pre_selected_rows=[0]) |
|
gb.configure_column("conversation", hide=True) |
|
gb.configure_column("Prompt preview", header_name="Prompt preview") |
|
gb.configure_column("Response preview", header_name="Response preview") |
|
gb.configure_column("conversation_id", header_name="Conversation ID") |
|
gb.configure_column("model", header_name="Model") |
|
gb.configure_column("language", header_name="Language") |
|
gb.configure_column("n_turns", header_name="Number of turns") |
|
gb.configure_grid_options(domLayout='normal') |
|
|
|
grid_options = gb.build() |
|
grid_options['columnDefs'] = [ |
|
{'field': 'View', 'headerCheckboxSelection': True, 'checkboxSelection': True, 'width': 50}, |
|
{'field': 'conversation_id', 'width': 150}, |
|
{'field': 'Prompt preview', 'width': 300}, |
|
{'field': 'Response preview', 'width': 300}, |
|
{'field': 'model', 'width': 70}, |
|
{'field': 'language', 'width': 55}, |
|
{'field': 'n_turns', 'width': 45} |
|
] |
|
|
|
grid_response = AgGrid( |
|
df_display, |
|
gridOptions=grid_options, |
|
update_mode=GridUpdateMode.SELECTION_CHANGED, |
|
fit_columns_on_grid_load=True, |
|
height=180, |
|
allow_unsafe_jscode=True |
|
) |
|
|
|
|
|
selected_rows = grid_response["selected_rows"] |
|
|
|
|
|
if (selected_rows is None or len(selected_rows) == 0) and len(df_display) > 0: |
|
selected_rows = df_display.iloc[[0]] |
|
|
|
st.write(f"{len(wrapper.active_df)} conversations loaded") |
|
col1, col2 = st.columns([2.4, 8]) |
|
|
|
with col1: |
|
col_layout = st.columns([1.4, 1.2, 1]) |
|
|
|
with col_layout[0]: |
|
|
|
st.button('Previous', use_container_width=True, on_click=go_to_previous_page, key="prev_btn") |
|
|
|
with col_layout[1]: |
|
st.markdown(f"<div style='text-align: center'>Page {st.session_state.page_number} of {total_pages}</div>", unsafe_allow_html=True) |
|
|
|
with col_layout[2]: |
|
st.button('Next', use_container_width=True, on_click=go_to_next_page, key="next_btn") |
|
|
|
|
|
def display_conversation(conversation): |
|
for message in conversation.conversation_data: |
|
if message['role'] == 'user': |
|
st.markdown(f"π {message['content']}") |
|
elif message['role'] == 'assistant': |
|
st.markdown(f"π€ {message['content']}") |
|
|
|
if len(selected_rows) > 0: |
|
|
|
try: |
|
selected_row = selected_rows[0] if isinstance(selected_rows, list) else selected_rows.iloc[0] |
|
conversation_id = selected_row["conversation_id"] |
|
conversation_row = wrapper.active_df.loc[wrapper.active_df["conversation_id"] == conversation_id].iloc[0] |
|
st.session_state.wrapper.active_conversation = lmsys.Conversation(conversation_row) |
|
st.write("---") |
|
|
|
col1, col2 = st.columns([2, 1]) |
|
|
|
model_print = st.session_state.wrapper.active_conversation.conversation_metadata.get('model', 'Unknown') |
|
id_print = st.session_state.wrapper.active_conversation.conversation_metadata.get('conversation_id', 'Unknown') |
|
lang_print = st.session_state.wrapper.active_conversation.conversation_metadata.get('language', 'Unknown') |
|
turns_print = st.session_state.wrapper.active_conversation.conversation_metadata.get('turn', 'Unknown') |
|
redacted_print = st.session_state.wrapper.active_conversation.conversation_metadata.get('redacted', 'Unknown') |
|
|
|
with col1: |
|
st.markdown(f"### Chat") |
|
display_conversation(st.session_state.wrapper.active_conversation) |
|
|
|
with col2: |
|
|
|
st.markdown("### Chat Metadata") |
|
st.markdown(f"**Conversation ID:** {id_print} \n" |
|
f"**Model:** {model_print} \n" |
|
f"**Language:** {lang_print} \n" |
|
f"**Turns:** {turns_print} \n" |
|
f"**Redacted:** {redacted_print}") |
|
|
|
|
|
st.write("---") |
|
|
|
|
|
st.write("### Rate this Conversation") |
|
vote_col1, vote_col2 = st.columns([1, 1]) |
|
|
|
with vote_col1: |
|
upvote = st.button("π Upvote") |
|
|
|
with vote_col2: |
|
downvote = st.button("π Downvote") |
|
|
|
|
|
if upvote or downvote: |
|
|
|
|
|
os.makedirs("json", exist_ok=True) |
|
votes_file = "json/votes_log.json" |
|
|
|
|
|
vote_data = { |
|
"conversation_id": id_print, |
|
"model": model_print, |
|
"vote": "upvote" if upvote else "downvote", |
|
"timestamp": datetime.now().isoformat(), |
|
} |
|
|
|
|
|
try: |
|
with open(votes_file, "r") as f: |
|
votes_log = json.load(f) |
|
except (FileNotFoundError, json.JSONDecodeError): |
|
votes_log = {"votes": []} |
|
|
|
|
|
votes_log["votes"].append(vote_data) |
|
with open(votes_file, "w") as f: |
|
json.dump(votes_log, f, indent=2) |
|
|
|
|
|
vote_type = "upvoted" if upvote else "downvoted" |
|
st.success(f"You {vote_type} this conversation. Thank you for your contribution!") |
|
|
|
|
|
st.write("---") |
|
st.markdown( |
|
"""<div style='text-align: center; color: gray; font-size: 16px;'> |
|
Β© 2025 <a href='https://talkingtochatbots.com' target='_blank'>TalkingToChatbots.com (TTCB)</a>, by Reddgr |
|
</div>""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
|
|
|
|
except (IndexError, KeyError, AttributeError) as e: |
|
st.error(f"Error displaying conversation: {e}") |