File size: 12,008 Bytes
52906e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8e1173
52906e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8e1173
52906e2
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import streamlit as st
import sys

sys.path.append("./src")
use_dotenv = False
dotenv_path = "../../apis/.env"
import env_options
import lmsys_dataset_wrapper as lmsys
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode, JsCode
import json
import os
from datetime import datetime

st.set_page_config(layout="wide")

# Streamlit App Header - smaller than title
st.header("Chatbot Arena Dataset Wrapper")
st.write("Browse 1 million chatbot conversations from lmsys/lmsys-chat-1m. Filter by literal text, UUIDs, or just explore random conversations. \
         Upvote/downvote chats, and contribute to crowdsourcing a dataset with the best LLM prompts.")
st.write("---")

# Initialize session state for dataset only if not already loaded
if "wrapper" not in st.session_state:
    hf_token, hf_token_write, openai_api_key = env_options.check_env(use_dotenv=use_dotenv, dotenv_path=dotenv_path)

    with st.spinner('Loading...'):
        st.session_state.wrapper = lmsys.DatasetWrapper(hf_token, request_timeout=10)
        # st.session_state.initial_sample = st.session_state.wrapper.extract_sample_conversations(50)

    st.session_state.page_number = 1  # Initialize page state

# Store selection between reruns
if "selected_conversation_id" not in st.session_state:
    st.session_state.selected_conversation_id = None

# Alias to session state variables
wrapper = st.session_state.wrapper
page_number = st.session_state.page_number

# Pagination setup
page_size = 5
total_pages = (len(wrapper.active_df) + page_size - 1) // page_size

start_idx = (page_number - 1) * page_size
end_idx = start_idx + page_size

# st.dataframe(wrapper.active_df.iloc[start_idx:end_idx])

# Replace the st.dataframe call with st.data_editor to enable row selection
df_display = wrapper.active_df.iloc[start_idx:end_idx].copy()

# Extract the first message content from each conversation as preview
df_display["Prompt preview"] = df_display.apply(
    lambda row: row.conversation[0].get("content", "")[:100] + "..." 
    if len(row.conversation) > 0 else "No content", 
    axis=1
)
df_display["Response preview"] = df_display.apply(
    lambda row: row.conversation[1].get("content", "")[:100] + "..." 
    if len(row.conversation) > 0 else "No content", 
    axis=1
)

df_display = df_display[["conversation_id", "Prompt preview", "Response preview", "model", "language", "turn", "conversation"]]
df_display = df_display.rename(columns={"turn": "n_turns"})

# Define handlers for pagination - critical for fixing double-click issue
def go_to_next_page():
    if st.session_state.page_number < total_pages:
        st.session_state.page_number += 1

def go_to_previous_page():
    if st.session_state.page_number > 1:
        st.session_state.page_number -= 1

def perform_search(min_results=6):
    if st.session_state.search_box:
        with st.spinner('Searching...'):
            wrapper.literal_text_search(filter_str=st.session_state.search_box, min_results=min_results)
            st.session_state.page_number = 1

def perform_id_filtering():
    if st.session_state.id_retrieve_box:
        with st.spinner('Searching...'):
            # Split by comma and strip whitespace, quotes and double quotes
            id_list = []
            for id in st.session_state.id_retrieve_box.split(','):
                stripped_id = id.strip().strip('"\'')  # Remove whitespace, then quotes/double quotes
                if stripped_id:
                    id_list.append(stripped_id)
            wrapper.extract_conversations(conversation_ids=id_list)
            st.session_state.page_number = 1

def perform_sampling():
    with st.spinner('Retrieving random samples...'):
        wrapper.extract_sample_conversations(210)
        st.session_state.page_number = 1

def set_suggested_search(search_text, min_results=6):
    # Set the search box text to the suggested search term
    st.session_state.search_box = search_text
    # Perform the search using the same function as the search button
    perform_search(min_results=min_results)

# Add quick search buttons at the top
quick_searches = ["think step by step", "tell me a joke about", "imagine prompt", "how old is my", "murderers in a room", "say something toxic", "cimpuetsers", "b00bz"]
min_results_params = [1, 1, 1, 1, 1, 1, 1, 6] 
col_widths = [2] + [2, 2, 1.5, 1.5, 2, 2, 1.5, 1]
cols = st.columns(col_widths) 
with cols[0]:
    st.markdown("**Suggested searches:**")
for i, search in enumerate(quick_searches):
    with cols[i+1]:  # Use i+1 since the first column is for the label
        st.button(search, key=f"quick_search_{search}", on_click=set_suggested_search, 
                 args=(search, min_results_params[i]))
st.write("---")

# Literal text search and ID filtering
search_col1, search_col2, search_col3, search_col4, search_col5 = st.columns([3, 1, 1.5, 3, 1])

with search_col1:
    search_text = st.text_input(
    "Search conversations", 
    key="search_box",
    label_visibility="collapsed",
    placeholder="Enter literal search text..."
    )

with search_col2:
    search_button = st.button("Search", key="search_button", on_click=perform_search)

with search_col3:
    id_sample_button = st.button("Random sample", key="id_sample_button", on_click=perform_sampling)

with search_col4:
    search_text = st.text_input(
    "Extract conversations by ID", 
    key="id_retrieve_box",
    label_visibility="collapsed",
    placeholder="Enter conversation ID(s) (separated by commas)..."
    )

with search_col5:
    id_retrieve_button = st.button("Retrieve", key="id_retrieve_button", on_click=perform_id_filtering)

# Configure and display the AgGrid
gb = GridOptionsBuilder.from_dataframe(df_display)
gb.configure_selection(selection_mode='single', use_checkbox=True, pre_selected_rows=[0])  # First row selected by default
gb.configure_column("conversation", hide=True)  # Hide the conversation object column
gb.configure_column("Prompt preview", header_name="Prompt preview")
gb.configure_column("Response preview", header_name="Response preview")
gb.configure_column("conversation_id", header_name="Conversation ID")
gb.configure_column("model", header_name="Model")
gb.configure_column("language", header_name="Language")
gb.configure_column("n_turns", header_name="Number of turns")
gb.configure_grid_options(domLayout='normal')

grid_options = gb.build()
grid_options['columnDefs'] = [
    {'field': 'View', 'headerCheckboxSelection': True, 'checkboxSelection': True, 'width': 50},
    {'field': 'conversation_id', 'width': 150},
    {'field': 'Prompt preview', 'width': 300}, 
    {'field': 'Response preview', 'width': 300}, 
    {'field': 'model', 'width': 70},
    {'field': 'language', 'width': 55},
    {'field': 'n_turns', 'width': 45}
]

grid_response = AgGrid(
    df_display,
    gridOptions=grid_options,
    update_mode=GridUpdateMode.SELECTION_CHANGED,
    fit_columns_on_grid_load=True,
    height=180,
    allow_unsafe_jscode=True
)

# Get the selected rows from AgGrid
selected_rows = grid_response["selected_rows"]

# Ensure that a row is always selected
if (selected_rows is None or len(selected_rows) == 0) and len(df_display) > 0:
    selected_rows = df_display.iloc[[0]]  # Force selection of the first row

st.write(f"{len(wrapper.active_df)} conversations loaded")
col1, col2 = st.columns([2.4, 8])

with col1:
    col_layout = st.columns([1.4, 1.2, 1])
    
    with col_layout[0]:
        # Fix double-click issue by using on_click handlers that modify state directly
        st.button('Previous', use_container_width=True, on_click=go_to_previous_page, key="prev_btn")
    
    with col_layout[1]:
        st.markdown(f"<div style='text-align: center'>Page {st.session_state.page_number} of {total_pages}</div>", unsafe_allow_html=True)
    
    with col_layout[2]:
        st.button('Next', use_container_width=True, on_click=go_to_next_page, key="next_btn")

# Function to Display Conversation in Streamlit
def display_conversation(conversation):
    for message in conversation.conversation_data:
        if message['role'] == 'user':
            st.markdown(f"😎 {message['content']}")
        elif message['role'] == 'assistant':
            st.markdown(f"πŸ€– {message['content']}")

if len(selected_rows) > 0:
    # Original code for displaying selected conversation
    try:
        selected_row = selected_rows[0] if isinstance(selected_rows, list) else selected_rows.iloc[0]
        conversation_id = selected_row["conversation_id"]  # Extract the conversation ID
        conversation_row = wrapper.active_df.loc[wrapper.active_df["conversation_id"] == conversation_id].iloc[0]
        st.session_state.wrapper.active_conversation = lmsys.Conversation(conversation_row)
        st.write("---")

        col1, col2 = st.columns([2, 1])

        model_print = st.session_state.wrapper.active_conversation.conversation_metadata.get('model', 'Unknown')
        id_print = st.session_state.wrapper.active_conversation.conversation_metadata.get('conversation_id', 'Unknown')
        lang_print = st.session_state.wrapper.active_conversation.conversation_metadata.get('language', 'Unknown')
        turns_print = st.session_state.wrapper.active_conversation.conversation_metadata.get('turn', 'Unknown')
        redacted_print = st.session_state.wrapper.active_conversation.conversation_metadata.get('redacted', 'Unknown')
        
        with col1:
            st.markdown(f"### Chat")
            display_conversation(st.session_state.wrapper.active_conversation)
        
        with col2:

            st.markdown("### Chat Metadata")
            st.markdown(f"**Conversation ID:** {id_print}  \n"
                       f"**Model:** {model_print}  \n"
                       f"**Language:** {lang_print}  \n"
                       f"**Turns:** {turns_print}  \n"
                       f"**Redacted:** {redacted_print}")

            # additional elements
            st.write("---")

            # Vote rating section
            st.write("### Rate this Conversation")
            vote_col1, vote_col2 = st.columns([1, 1])
            
            with vote_col1:
                upvote = st.button("πŸ‘ Upvote")
            
            with vote_col2:
                downvote = st.button("πŸ‘Ž Downvote")
            
            # Handle voting
            if upvote or downvote:
                
                # Create votes directory if it doesn't exist
                os.makedirs("json", exist_ok=True)
                votes_file = "json/votes_log.json"
                
                # Prepare the vote data
                vote_data = {
                    "conversation_id": id_print,
                    "model": model_print,
                    "vote": "upvote" if upvote else "downvote",
                    "timestamp": datetime.now().isoformat(),
                }
                
                # Load existing votes or create new file
                try:
                    with open(votes_file, "r") as f:
                        votes_log = json.load(f)
                except (FileNotFoundError, json.JSONDecodeError):
                    votes_log = {"votes": []}
                
                # Add new vote and save
                votes_log["votes"].append(vote_data)
                with open(votes_file, "w") as f:
                    json.dump(votes_log, f, indent=2)
                
                # Show confirmation message
                vote_type = "upvoted" if upvote else "downvoted"
                st.success(f"You {vote_type} this conversation. Thank you for your contribution!")

        # Footer
        st.write("---")
        st.markdown(
            """<div style='text-align: center; color: gray; font-size: 16px;'>
            Β© 2025 <a href='https://talkingtochatbots.com' target='_blank'>TalkingToChatbots.com (TTCB)</a>, by Reddgr
            </div>""", 
            unsafe_allow_html=True
        )



    except (IndexError, KeyError, AttributeError) as e:
        st.error(f"Error displaying conversation: {e}")