File size: 12,008 Bytes
52906e2 a8e1173 52906e2 a8e1173 52906e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import streamlit as st
import sys
sys.path.append("./src")
use_dotenv = False
dotenv_path = "../../apis/.env"
import env_options
import lmsys_dataset_wrapper as lmsys
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode, JsCode
import json
import os
from datetime import datetime
st.set_page_config(layout="wide")
# Streamlit App Header - smaller than title
st.header("Chatbot Arena Dataset Wrapper")
st.write("Browse 1 million chatbot conversations from lmsys/lmsys-chat-1m. Filter by literal text, UUIDs, or just explore random conversations. \
Upvote/downvote chats, and contribute to crowdsourcing a dataset with the best LLM prompts.")
st.write("---")
# Initialize session state for dataset only if not already loaded
if "wrapper" not in st.session_state:
hf_token, hf_token_write, openai_api_key = env_options.check_env(use_dotenv=use_dotenv, dotenv_path=dotenv_path)
with st.spinner('Loading...'):
st.session_state.wrapper = lmsys.DatasetWrapper(hf_token, request_timeout=10)
# st.session_state.initial_sample = st.session_state.wrapper.extract_sample_conversations(50)
st.session_state.page_number = 1 # Initialize page state
# Store selection between reruns
if "selected_conversation_id" not in st.session_state:
st.session_state.selected_conversation_id = None
# Alias to session state variables
wrapper = st.session_state.wrapper
page_number = st.session_state.page_number
# Pagination setup
page_size = 5
total_pages = (len(wrapper.active_df) + page_size - 1) // page_size
start_idx = (page_number - 1) * page_size
end_idx = start_idx + page_size
# st.dataframe(wrapper.active_df.iloc[start_idx:end_idx])
# Replace the st.dataframe call with st.data_editor to enable row selection
df_display = wrapper.active_df.iloc[start_idx:end_idx].copy()
# Extract the first message content from each conversation as preview
df_display["Prompt preview"] = df_display.apply(
lambda row: row.conversation[0].get("content", "")[:100] + "..."
if len(row.conversation) > 0 else "No content",
axis=1
)
df_display["Response preview"] = df_display.apply(
lambda row: row.conversation[1].get("content", "")[:100] + "..."
if len(row.conversation) > 0 else "No content",
axis=1
)
df_display = df_display[["conversation_id", "Prompt preview", "Response preview", "model", "language", "turn", "conversation"]]
df_display = df_display.rename(columns={"turn": "n_turns"})
# Define handlers for pagination - critical for fixing double-click issue
def go_to_next_page():
if st.session_state.page_number < total_pages:
st.session_state.page_number += 1
def go_to_previous_page():
if st.session_state.page_number > 1:
st.session_state.page_number -= 1
def perform_search(min_results=6):
if st.session_state.search_box:
with st.spinner('Searching...'):
wrapper.literal_text_search(filter_str=st.session_state.search_box, min_results=min_results)
st.session_state.page_number = 1
def perform_id_filtering():
if st.session_state.id_retrieve_box:
with st.spinner('Searching...'):
# Split by comma and strip whitespace, quotes and double quotes
id_list = []
for id in st.session_state.id_retrieve_box.split(','):
stripped_id = id.strip().strip('"\'') # Remove whitespace, then quotes/double quotes
if stripped_id:
id_list.append(stripped_id)
wrapper.extract_conversations(conversation_ids=id_list)
st.session_state.page_number = 1
def perform_sampling():
with st.spinner('Retrieving random samples...'):
wrapper.extract_sample_conversations(210)
st.session_state.page_number = 1
def set_suggested_search(search_text, min_results=6):
# Set the search box text to the suggested search term
st.session_state.search_box = search_text
# Perform the search using the same function as the search button
perform_search(min_results=min_results)
# Add quick search buttons at the top
quick_searches = ["think step by step", "tell me a joke about", "imagine prompt", "how old is my", "murderers in a room", "say something toxic", "cimpuetsers", "b00bz"]
min_results_params = [1, 1, 1, 1, 1, 1, 1, 6]
col_widths = [2] + [2, 2, 1.5, 1.5, 2, 2, 1.5, 1]
cols = st.columns(col_widths)
with cols[0]:
st.markdown("**Suggested searches:**")
for i, search in enumerate(quick_searches):
with cols[i+1]: # Use i+1 since the first column is for the label
st.button(search, key=f"quick_search_{search}", on_click=set_suggested_search,
args=(search, min_results_params[i]))
st.write("---")
# Literal text search and ID filtering
search_col1, search_col2, search_col3, search_col4, search_col5 = st.columns([3, 1, 1.5, 3, 1])
with search_col1:
search_text = st.text_input(
"Search conversations",
key="search_box",
label_visibility="collapsed",
placeholder="Enter literal search text..."
)
with search_col2:
search_button = st.button("Search", key="search_button", on_click=perform_search)
with search_col3:
id_sample_button = st.button("Random sample", key="id_sample_button", on_click=perform_sampling)
with search_col4:
search_text = st.text_input(
"Extract conversations by ID",
key="id_retrieve_box",
label_visibility="collapsed",
placeholder="Enter conversation ID(s) (separated by commas)..."
)
with search_col5:
id_retrieve_button = st.button("Retrieve", key="id_retrieve_button", on_click=perform_id_filtering)
# Configure and display the AgGrid
gb = GridOptionsBuilder.from_dataframe(df_display)
gb.configure_selection(selection_mode='single', use_checkbox=True, pre_selected_rows=[0]) # First row selected by default
gb.configure_column("conversation", hide=True) # Hide the conversation object column
gb.configure_column("Prompt preview", header_name="Prompt preview")
gb.configure_column("Response preview", header_name="Response preview")
gb.configure_column("conversation_id", header_name="Conversation ID")
gb.configure_column("model", header_name="Model")
gb.configure_column("language", header_name="Language")
gb.configure_column("n_turns", header_name="Number of turns")
gb.configure_grid_options(domLayout='normal')
grid_options = gb.build()
grid_options['columnDefs'] = [
{'field': 'View', 'headerCheckboxSelection': True, 'checkboxSelection': True, 'width': 50},
{'field': 'conversation_id', 'width': 150},
{'field': 'Prompt preview', 'width': 300},
{'field': 'Response preview', 'width': 300},
{'field': 'model', 'width': 70},
{'field': 'language', 'width': 55},
{'field': 'n_turns', 'width': 45}
]
grid_response = AgGrid(
df_display,
gridOptions=grid_options,
update_mode=GridUpdateMode.SELECTION_CHANGED,
fit_columns_on_grid_load=True,
height=180,
allow_unsafe_jscode=True
)
# Get the selected rows from AgGrid
selected_rows = grid_response["selected_rows"]
# Ensure that a row is always selected
if (selected_rows is None or len(selected_rows) == 0) and len(df_display) > 0:
selected_rows = df_display.iloc[[0]] # Force selection of the first row
st.write(f"{len(wrapper.active_df)} conversations loaded")
col1, col2 = st.columns([2.4, 8])
with col1:
col_layout = st.columns([1.4, 1.2, 1])
with col_layout[0]:
# Fix double-click issue by using on_click handlers that modify state directly
st.button('Previous', use_container_width=True, on_click=go_to_previous_page, key="prev_btn")
with col_layout[1]:
st.markdown(f"<div style='text-align: center'>Page {st.session_state.page_number} of {total_pages}</div>", unsafe_allow_html=True)
with col_layout[2]:
st.button('Next', use_container_width=True, on_click=go_to_next_page, key="next_btn")
# Function to Display Conversation in Streamlit
def display_conversation(conversation):
for message in conversation.conversation_data:
if message['role'] == 'user':
st.markdown(f"π {message['content']}")
elif message['role'] == 'assistant':
st.markdown(f"π€ {message['content']}")
if len(selected_rows) > 0:
# Original code for displaying selected conversation
try:
selected_row = selected_rows[0] if isinstance(selected_rows, list) else selected_rows.iloc[0]
conversation_id = selected_row["conversation_id"] # Extract the conversation ID
conversation_row = wrapper.active_df.loc[wrapper.active_df["conversation_id"] == conversation_id].iloc[0]
st.session_state.wrapper.active_conversation = lmsys.Conversation(conversation_row)
st.write("---")
col1, col2 = st.columns([2, 1])
model_print = st.session_state.wrapper.active_conversation.conversation_metadata.get('model', 'Unknown')
id_print = st.session_state.wrapper.active_conversation.conversation_metadata.get('conversation_id', 'Unknown')
lang_print = st.session_state.wrapper.active_conversation.conversation_metadata.get('language', 'Unknown')
turns_print = st.session_state.wrapper.active_conversation.conversation_metadata.get('turn', 'Unknown')
redacted_print = st.session_state.wrapper.active_conversation.conversation_metadata.get('redacted', 'Unknown')
with col1:
st.markdown(f"### Chat")
display_conversation(st.session_state.wrapper.active_conversation)
with col2:
st.markdown("### Chat Metadata")
st.markdown(f"**Conversation ID:** {id_print} \n"
f"**Model:** {model_print} \n"
f"**Language:** {lang_print} \n"
f"**Turns:** {turns_print} \n"
f"**Redacted:** {redacted_print}")
# additional elements
st.write("---")
# Vote rating section
st.write("### Rate this Conversation")
vote_col1, vote_col2 = st.columns([1, 1])
with vote_col1:
upvote = st.button("π Upvote")
with vote_col2:
downvote = st.button("π Downvote")
# Handle voting
if upvote or downvote:
# Create votes directory if it doesn't exist
os.makedirs("json", exist_ok=True)
votes_file = "json/votes_log.json"
# Prepare the vote data
vote_data = {
"conversation_id": id_print,
"model": model_print,
"vote": "upvote" if upvote else "downvote",
"timestamp": datetime.now().isoformat(),
}
# Load existing votes or create new file
try:
with open(votes_file, "r") as f:
votes_log = json.load(f)
except (FileNotFoundError, json.JSONDecodeError):
votes_log = {"votes": []}
# Add new vote and save
votes_log["votes"].append(vote_data)
with open(votes_file, "w") as f:
json.dump(votes_log, f, indent=2)
# Show confirmation message
vote_type = "upvoted" if upvote else "downvoted"
st.success(f"You {vote_type} this conversation. Thank you for your contribution!")
# Footer
st.write("---")
st.markdown(
"""<div style='text-align: center; color: gray; font-size: 16px;'>
Β© 2025 <a href='https://talkingtochatbots.com' target='_blank'>TalkingToChatbots.com (TTCB)</a>, by Reddgr
</div>""",
unsafe_allow_html=True
)
except (IndexError, KeyError, AttributeError) as e:
st.error(f"Error displaying conversation: {e}") |