Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import sys
|
3 |
+
|
4 |
+
sys.path.append("./src")
|
5 |
+
use_dotenv = False
|
6 |
+
dotenv_path = "../../apis/.env"
|
7 |
+
import env_options
|
8 |
+
import lmsys_dataset_wrapper as lmsys
|
9 |
+
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode, JsCode
|
10 |
+
import json
|
11 |
+
import os
|
12 |
+
from datetime import datetime
|
13 |
+
|
14 |
+
st.set_page_config(layout="wide")
|
15 |
+
|
16 |
+
# Streamlit App Header - smaller than title
|
17 |
+
st.header("Chatbot Arena Dataset Wrapper")
|
18 |
+
st.write("Browse 1 million chatbot conversations from lmsys/lmsys-chat-1m. Filter by literal text, UUIDs, or just explore random conversations. \
|
19 |
+
Upvote/downvote chats, and contribute to crowdsourcing a dataset with the best LLM prompts.")
|
20 |
+
st.write("---")
|
21 |
+
|
22 |
+
# Initialize session state for dataset only if not already loaded
|
23 |
+
if "wrapper" not in st.session_state:
|
24 |
+
hf_token, hf_token_write, openai_api_key = env_options.check_env(use_dotenv=use_dotenv, dotenv_path=dotenv_path)
|
25 |
+
|
26 |
+
with st.spinner('Loading...'):
|
27 |
+
st.session_state.wrapper = lmsys.DatasetWrapper(hf_token, request_timeout=10)
|
28 |
+
# st.session_state.initial_sample = st.session_state.wrapper.extract_sample_conversations(50)
|
29 |
+
|
30 |
+
st.session_state.page_number = 1 # Initialize page state
|
31 |
+
|
32 |
+
# Store selection between reruns
|
33 |
+
if "selected_conversation_id" not in st.session_state:
|
34 |
+
st.session_state.selected_conversation_id = None
|
35 |
+
|
36 |
+
# Alias to session state variables
|
37 |
+
wrapper = st.session_state.wrapper
|
38 |
+
page_number = st.session_state.page_number
|
39 |
+
|
40 |
+
# Pagination setup
|
41 |
+
page_size = 5
|
42 |
+
total_pages = (len(wrapper.active_df) + page_size - 1) // page_size
|
43 |
+
|
44 |
+
start_idx = (page_number - 1) * page_size
|
45 |
+
end_idx = start_idx + page_size
|
46 |
+
|
47 |
+
# st.dataframe(wrapper.active_df.iloc[start_idx:end_idx])
|
48 |
+
|
49 |
+
# Replace the st.dataframe call with st.data_editor to enable row selection
|
50 |
+
df_display = wrapper.active_df.iloc[start_idx:end_idx].copy()
|
51 |
+
|
52 |
+
# Extract the first message content from each conversation as preview
|
53 |
+
df_display["Prompt preview"] = df_display.apply(
|
54 |
+
lambda row: row.conversation[0].get("content", "")[:100] + "..."
|
55 |
+
if len(row.conversation) > 0 else "No content",
|
56 |
+
axis=1
|
57 |
+
)
|
58 |
+
df_display["Response preview"] = df_display.apply(
|
59 |
+
lambda row: row.conversation[1].get("content", "")[:100] + "..."
|
60 |
+
if len(row.conversation) > 0 else "No content",
|
61 |
+
axis=1
|
62 |
+
)
|
63 |
+
|
64 |
+
df_display = df_display[["conversation_id", "Prompt preview", "Response preview", "model", "language", "turn", "conversation"]]
|
65 |
+
df_display = df_display.rename(columns={"turn": "n_turns"})
|
66 |
+
|
67 |
+
# Define handlers for pagination - critical for fixing double-click issue
|
68 |
+
def go_to_next_page():
|
69 |
+
if st.session_state.page_number < total_pages:
|
70 |
+
st.session_state.page_number += 1
|
71 |
+
|
72 |
+
def go_to_previous_page():
|
73 |
+
if st.session_state.page_number > 1:
|
74 |
+
st.session_state.page_number -= 1
|
75 |
+
|
76 |
+
def perform_search(min_results=6):
|
77 |
+
if st.session_state.search_box:
|
78 |
+
with st.spinner('Searching...'):
|
79 |
+
wrapper.literal_text_search(filter_str=st.session_state.search_box, min_results=min_results)
|
80 |
+
st.session_state.page_number = 1
|
81 |
+
|
82 |
+
def perform_id_filtering():
|
83 |
+
if st.session_state.id_retrieve_box:
|
84 |
+
with st.spinner('Searching...'):
|
85 |
+
# Split by comma and strip whitespace, quotes and double quotes
|
86 |
+
id_list = []
|
87 |
+
for id in st.session_state.id_retrieve_box.split(','):
|
88 |
+
stripped_id = id.strip().strip('"\'') # Remove whitespace, then quotes/double quotes
|
89 |
+
if stripped_id:
|
90 |
+
id_list.append(stripped_id)
|
91 |
+
wrapper.extract_conversations(conversation_ids=id_list)
|
92 |
+
st.session_state.page_number = 1
|
93 |
+
|
94 |
+
def perform_sampling():
|
95 |
+
with st.spinner('Retrieving random samples...'):
|
96 |
+
wrapper.extract_sample_conversations(210)
|
97 |
+
st.session_state.page_number = 1
|
98 |
+
|
99 |
+
def set_suggested_search(search_text, min_results=6):
|
100 |
+
# Set the search box text to the suggested search term
|
101 |
+
st.session_state.search_box = search_text
|
102 |
+
# Perform the search using the same function as the search button
|
103 |
+
perform_search(min_results=min_results)
|
104 |
+
|
105 |
+
# Add quick search buttons at the top
|
106 |
+
quick_searches = ["think step by step", "tell me a joke about", "imagine prompt", "how old is my", "murderers in a room", "say something toxic", "cimpuetsers", "b00bz"]
|
107 |
+
min_results_params = [1, 1, 1, 1, 1, 1, 1, 6]
|
108 |
+
col_widths = [2] + [2, 2, 1.5, 1.5, 2, 2, 1.5, 1]
|
109 |
+
cols = st.columns(col_widths)
|
110 |
+
with cols[0]:
|
111 |
+
st.markdown("**Suggested searches:**")
|
112 |
+
for i, search in enumerate(quick_searches):
|
113 |
+
with cols[i+1]: # Use i+1 since the first column is for the label
|
114 |
+
st.button(search, key=f"quick_search_{search}", on_click=set_suggested_search,
|
115 |
+
args=(search, min_results_params[i]))
|
116 |
+
|
117 |
+
# Literal text search and ID filtering
|
118 |
+
search_col1, search_col2, search_col3, search_col4, search_col5 = st.columns([3, 1, 1.5, 3, 1])
|
119 |
+
|
120 |
+
with search_col1:
|
121 |
+
search_text = st.text_input(
|
122 |
+
"Search conversations",
|
123 |
+
key="search_box",
|
124 |
+
label_visibility="collapsed",
|
125 |
+
placeholder="Enter literal search text..."
|
126 |
+
)
|
127 |
+
|
128 |
+
with search_col2:
|
129 |
+
search_button = st.button("Search", key="search_button", on_click=perform_search)
|
130 |
+
|
131 |
+
with search_col3:
|
132 |
+
id_sample_button = st.button("Random sample", key="id_sample_button", on_click=perform_sampling)
|
133 |
+
|
134 |
+
with search_col4:
|
135 |
+
search_text = st.text_input(
|
136 |
+
"Extract conversations by ID",
|
137 |
+
key="id_retrieve_box",
|
138 |
+
label_visibility="collapsed",
|
139 |
+
placeholder="Enter conversation ID(s) (separated by commas)..."
|
140 |
+
)
|
141 |
+
|
142 |
+
with search_col5:
|
143 |
+
id_retrieve_button = st.button("Retrieve", key="id_retrieve_button", on_click=perform_id_filtering)
|
144 |
+
|
145 |
+
# Configure and display the AgGrid
|
146 |
+
gb = GridOptionsBuilder.from_dataframe(df_display)
|
147 |
+
gb.configure_selection(selection_mode='single', use_checkbox=True, pre_selected_rows=[0]) # First row selected by default
|
148 |
+
gb.configure_column("conversation", hide=True) # Hide the conversation object column
|
149 |
+
gb.configure_column("Prompt preview", header_name="Prompt preview")
|
150 |
+
gb.configure_column("Response preview", header_name="Response preview")
|
151 |
+
gb.configure_column("conversation_id", header_name="Conversation ID")
|
152 |
+
gb.configure_column("model", header_name="Model")
|
153 |
+
gb.configure_column("language", header_name="Language")
|
154 |
+
gb.configure_column("n_turns", header_name="Number of turns")
|
155 |
+
gb.configure_grid_options(domLayout='normal')
|
156 |
+
|
157 |
+
grid_options = gb.build()
|
158 |
+
grid_options['columnDefs'] = [
|
159 |
+
{'field': 'View', 'headerCheckboxSelection': True, 'checkboxSelection': True, 'width': 50},
|
160 |
+
{'field': 'conversation_id', 'width': 150},
|
161 |
+
{'field': 'Prompt preview', 'width': 300},
|
162 |
+
{'field': 'Response preview', 'width': 300},
|
163 |
+
{'field': 'model', 'width': 70},
|
164 |
+
{'field': 'language', 'width': 55},
|
165 |
+
{'field': 'n_turns', 'width': 45}
|
166 |
+
]
|
167 |
+
|
168 |
+
grid_response = AgGrid(
|
169 |
+
df_display,
|
170 |
+
gridOptions=grid_options,
|
171 |
+
update_mode=GridUpdateMode.SELECTION_CHANGED,
|
172 |
+
fit_columns_on_grid_load=True,
|
173 |
+
height=180,
|
174 |
+
allow_unsafe_jscode=True
|
175 |
+
)
|
176 |
+
|
177 |
+
# Get the selected rows from AgGrid
|
178 |
+
selected_rows = grid_response["selected_rows"]
|
179 |
+
|
180 |
+
# Ensure that a row is always selected
|
181 |
+
if (selected_rows is None or len(selected_rows) == 0) and len(df_display) > 0:
|
182 |
+
selected_rows = df_display.iloc[[0]] # Force selection of the first row
|
183 |
+
|
184 |
+
st.write(f"{len(wrapper.active_df)} conversations loaded")
|
185 |
+
col1, col2 = st.columns([2.4, 8])
|
186 |
+
|
187 |
+
with col1:
|
188 |
+
col_layout = st.columns([1.4, 1.2, 1])
|
189 |
+
|
190 |
+
with col_layout[0]:
|
191 |
+
# Fix double-click issue by using on_click handlers that modify state directly
|
192 |
+
st.button('Previous', use_container_width=True, on_click=go_to_previous_page, key="prev_btn")
|
193 |
+
|
194 |
+
with col_layout[1]:
|
195 |
+
st.markdown(f"<div style='text-align: center'>Page {st.session_state.page_number} of {total_pages}</div>", unsafe_allow_html=True)
|
196 |
+
|
197 |
+
with col_layout[2]:
|
198 |
+
st.button('Next', use_container_width=True, on_click=go_to_next_page, key="next_btn")
|
199 |
+
|
200 |
+
# Function to Display Conversation in Streamlit
|
201 |
+
def display_conversation(conversation):
|
202 |
+
for message in conversation.conversation_data:
|
203 |
+
if message['role'] == 'user':
|
204 |
+
st.markdown(f"π {message['content']}")
|
205 |
+
elif message['role'] == 'assistant':
|
206 |
+
st.markdown(f"π€ {message['content']}")
|
207 |
+
|
208 |
+
if len(selected_rows) > 0:
|
209 |
+
# Original code for displaying selected conversation
|
210 |
+
try:
|
211 |
+
selected_row = selected_rows[0] if isinstance(selected_rows, list) else selected_rows.iloc[0]
|
212 |
+
conversation_id = selected_row["conversation_id"] # Extract the conversation ID
|
213 |
+
conversation_row = wrapper.active_df.loc[wrapper.active_df["conversation_id"] == conversation_id].iloc[0]
|
214 |
+
st.session_state.wrapper.active_conversation = lmsys.Conversation(conversation_row)
|
215 |
+
st.write("---")
|
216 |
+
|
217 |
+
col1, col2 = st.columns([2, 1])
|
218 |
+
|
219 |
+
model_print = st.session_state.wrapper.active_conversation.conversation_metadata.get('model', 'Unknown')
|
220 |
+
id_print = st.session_state.wrapper.active_conversation.conversation_metadata.get('conversation_id', 'Unknown')
|
221 |
+
lang_print = st.session_state.wrapper.active_conversation.conversation_metadata.get('language', 'Unknown')
|
222 |
+
turns_print = st.session_state.wrapper.active_conversation.conversation_metadata.get('turn', 'Unknown')
|
223 |
+
redacted_print = st.session_state.wrapper.active_conversation.conversation_metadata.get('redacted', 'Unknown')
|
224 |
+
|
225 |
+
with col1:
|
226 |
+
st.markdown(f"### Chat")
|
227 |
+
display_conversation(st.session_state.wrapper.active_conversation)
|
228 |
+
|
229 |
+
with col2:
|
230 |
+
|
231 |
+
st.markdown("### Chat Metadata")
|
232 |
+
st.markdown(f"**Conversation ID:** {id_print} \n"
|
233 |
+
f"**Model:** {model_print} \n"
|
234 |
+
f"**Language:** {lang_print} \n"
|
235 |
+
f"**Turns:** {turns_print} \n"
|
236 |
+
f"**Redacted:** {redacted_print}")
|
237 |
+
|
238 |
+
# additional elements
|
239 |
+
st.write("---")
|
240 |
+
|
241 |
+
# Vote rating section
|
242 |
+
st.write("### Rate this Conversation")
|
243 |
+
vote_col1, vote_col2 = st.columns([1, 1])
|
244 |
+
|
245 |
+
with vote_col1:
|
246 |
+
upvote = st.button("π Upvote")
|
247 |
+
|
248 |
+
with vote_col2:
|
249 |
+
downvote = st.button("π Downvote")
|
250 |
+
|
251 |
+
# Handle voting
|
252 |
+
if upvote or downvote:
|
253 |
+
|
254 |
+
# Create votes directory if it doesn't exist
|
255 |
+
os.makedirs("json", exist_ok=True)
|
256 |
+
votes_file = "json/votes_log.json"
|
257 |
+
|
258 |
+
# Prepare the vote data
|
259 |
+
vote_data = {
|
260 |
+
"conversation_id": id_print,
|
261 |
+
"model": model_print,
|
262 |
+
"vote": "upvote" if upvote else "downvote",
|
263 |
+
"timestamp": datetime.now().isoformat(),
|
264 |
+
}
|
265 |
+
|
266 |
+
# Load existing votes or create new file
|
267 |
+
try:
|
268 |
+
with open(votes_file, "r") as f:
|
269 |
+
votes_log = json.load(f)
|
270 |
+
except (FileNotFoundError, json.JSONDecodeError):
|
271 |
+
votes_log = {"votes": []}
|
272 |
+
|
273 |
+
# Add new vote and save
|
274 |
+
votes_log["votes"].append(vote_data)
|
275 |
+
with open(votes_file, "w") as f:
|
276 |
+
json.dump(votes_log, f, indent=2)
|
277 |
+
|
278 |
+
# Show confirmation message
|
279 |
+
vote_type = "upvoted" if upvote else "downvoted"
|
280 |
+
st.success(f"You {vote_type} this conversation. Thank you for your feedback!")
|
281 |
+
|
282 |
+
# Footer
|
283 |
+
st.write("---")
|
284 |
+
st.markdown(
|
285 |
+
"""<div style='text-align: center; color: gray; font-size: 16px;'>
|
286 |
+
Β© 2025 <a href='https://talkingtochatbots.com' target='_blank'>TalkingToChatbots.com (TTCB)</a>, by Reddgr
|
287 |
+
</div>""",
|
288 |
+
unsafe_allow_html=True
|
289 |
+
)
|
290 |
+
|
291 |
+
|
292 |
+
|
293 |
+
except (IndexError, KeyError, AttributeError) as e:
|
294 |
+
st.error(f"Error displaying conversation: {e}")
|