Update app.py
Browse files
app.py
CHANGED
@@ -34,7 +34,7 @@ def process_video(video_path, target, progress=gr.Progress()):
|
|
34 |
|
35 |
processed_frames = []
|
36 |
frame_scores = []
|
37 |
-
batch_size =
|
38 |
batch_frames = []
|
39 |
batch_times = []
|
40 |
|
@@ -63,7 +63,7 @@ def process_video(video_path, target, progress=gr.Progress()):
|
|
63 |
max_score = 0
|
64 |
|
65 |
try:
|
66 |
-
font = ImageFont.truetype("arial.ttf",
|
67 |
except IOError:
|
68 |
font = ImageFont.load_default()
|
69 |
|
@@ -76,7 +76,7 @@ def process_video(video_path, target, progress=gr.Progress()):
|
|
76 |
confidence = round(score.item(), 3)
|
77 |
annotation = f"{object_label}: {confidence}"
|
78 |
|
79 |
-
draw.rectangle(box, outline="red", width=
|
80 |
text_position = (box[0], box[1] - 30)
|
81 |
draw.text(text_position, annotation, fill="white", font=font)
|
82 |
|
@@ -91,17 +91,29 @@ def process_video(video_path, target, progress=gr.Progress()):
|
|
91 |
cap.release()
|
92 |
return processed_frames, frame_scores, None
|
93 |
|
94 |
-
def create_heatmap(frame_scores):
|
95 |
-
plt.figure(figsize=(
|
96 |
-
plt.imshow([frame_scores], cmap='
|
97 |
-
plt.colorbar(label='Confidence')
|
|
|
|
|
98 |
plt.title('Object Detection Heatmap')
|
99 |
plt.xlabel('Frame')
|
100 |
plt.yticks([])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
plt.tight_layout()
|
102 |
|
103 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp_file:
|
104 |
-
plt.savefig(tmp_file.name, format='png')
|
105 |
plt.close()
|
106 |
|
107 |
return tmp_file.name
|
@@ -124,10 +136,10 @@ def gradio_app():
|
|
124 |
video_input = gr.Video(label="Upload Video")
|
125 |
target_input = gr.Textbox(label="Target Object", value="Elephant")
|
126 |
frame_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Frame", value=0)
|
127 |
-
output_image = gr.Image(label="Processed Frame")
|
128 |
heatmap_output = gr.Image(label="Detection Heatmap")
|
|
|
129 |
error_output = gr.Textbox(label="Error Messages", visible=False)
|
130 |
-
sample_video_frame = gr.Image(value=load_sample_frame("Drone Video of African Wildlife Wild Botswan.mp4"), label="Sample Video Frame")
|
131 |
use_sample_button = gr.Button("Use Sample Video")
|
132 |
progress_bar = gr.Progress()
|
133 |
|
@@ -137,22 +149,23 @@ def gradio_app():
|
|
137 |
def process_and_update(video, target):
|
138 |
frames, scores, error = process_video(video, target, progress_bar)
|
139 |
if frames is not None:
|
140 |
-
heatmap_path = create_heatmap(scores)
|
141 |
return frames, scores, frames[0], heatmap_path, error, gr.Slider(maximum=len(frames) - 1, value=0)
|
142 |
return None, None, None, None, error, gr.Slider(maximum=100, value=0)
|
143 |
|
144 |
-
def
|
145 |
if frames and 0 <= frame_index < len(frames):
|
146 |
-
|
147 |
-
|
|
|
148 |
|
149 |
video_input.upload(process_and_update,
|
150 |
inputs=[video_input, target_input],
|
151 |
outputs=[processed_frames, frame_scores, output_image, heatmap_output, error_output, frame_slider])
|
152 |
|
153 |
-
frame_slider.change(
|
154 |
-
inputs=[frame_slider, processed_frames],
|
155 |
-
outputs=[output_image])
|
156 |
|
157 |
def use_sample_video():
|
158 |
sample_video_path = "Drone Video of African Wildlife Wild Botswan.mp4"
|
@@ -162,6 +175,19 @@ def gradio_app():
|
|
162 |
inputs=None,
|
163 |
outputs=[processed_frames, frame_scores, output_image, heatmap_output, error_output, frame_slider])
|
164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
return app
|
166 |
|
167 |
if __name__ == "__main__":
|
|
|
34 |
|
35 |
processed_frames = []
|
36 |
frame_scores = []
|
37 |
+
batch_size = 2
|
38 |
batch_frames = []
|
39 |
batch_times = []
|
40 |
|
|
|
63 |
max_score = 0
|
64 |
|
65 |
try:
|
66 |
+
font = ImageFont.truetype("arial.ttf", 40)
|
67 |
except IOError:
|
68 |
font = ImageFont.load_default()
|
69 |
|
|
|
76 |
confidence = round(score.item(), 3)
|
77 |
annotation = f"{object_label}: {confidence}"
|
78 |
|
79 |
+
draw.rectangle(box, outline="red", width=2)
|
80 |
text_position = (box[0], box[1] - 30)
|
81 |
draw.text(text_position, annotation, fill="white", font=font)
|
82 |
|
|
|
91 |
cap.release()
|
92 |
return processed_frames, frame_scores, None
|
93 |
|
94 |
+
def create_heatmap(frame_scores, current_frame):
|
95 |
+
plt.figure(figsize=(12, 3))
|
96 |
+
plt.imshow([frame_scores], cmap='hot_r', aspect='auto') # 'hot_r' for reversed hot colormap
|
97 |
+
cbar = plt.colorbar(label='Confidence')
|
98 |
+
cbar.ax.yaxis.set_ticks_position('left')
|
99 |
+
cbar.ax.yaxis.set_label_position('left')
|
100 |
plt.title('Object Detection Heatmap')
|
101 |
plt.xlabel('Frame')
|
102 |
plt.yticks([])
|
103 |
+
|
104 |
+
# Add more frame numbers on x-axis
|
105 |
+
num_frames = len(frame_scores)
|
106 |
+
step = max(1, num_frames // 10) # Show at most 10 frame numbers
|
107 |
+
frame_numbers = range(0, num_frames, step)
|
108 |
+
plt.xticks(frame_numbers, [str(i) for i in frame_numbers])
|
109 |
+
|
110 |
+
# Add vertical line for current frame
|
111 |
+
plt.axvline(x=current_frame, color='blue', linestyle='--', linewidth=2)
|
112 |
+
|
113 |
plt.tight_layout()
|
114 |
|
115 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp_file:
|
116 |
+
plt.savefig(tmp_file.name, format='png', dpi=400, bbox_inches='tight')
|
117 |
plt.close()
|
118 |
|
119 |
return tmp_file.name
|
|
|
136 |
video_input = gr.Video(label="Upload Video")
|
137 |
target_input = gr.Textbox(label="Target Object", value="Elephant")
|
138 |
frame_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Frame", value=0)
|
|
|
139 |
heatmap_output = gr.Image(label="Detection Heatmap")
|
140 |
+
output_image = gr.Image(label="Processed Frame")
|
141 |
error_output = gr.Textbox(label="Error Messages", visible=False)
|
142 |
+
sample_video_frame = gr.Image(value=load_sample_frame("Drone Video of African Wildlife Wild Botswan.mp4"), label="Drone Video of African Wildlife Wild Botswan by wildimagesonline.com - Sample Video Frame")
|
143 |
use_sample_button = gr.Button("Use Sample Video")
|
144 |
progress_bar = gr.Progress()
|
145 |
|
|
|
149 |
def process_and_update(video, target):
|
150 |
frames, scores, error = process_video(video, target, progress_bar)
|
151 |
if frames is not None:
|
152 |
+
heatmap_path = create_heatmap(scores, 0) # Initial heatmap with current frame at 0
|
153 |
return frames, scores, frames[0], heatmap_path, error, gr.Slider(maximum=len(frames) - 1, value=0)
|
154 |
return None, None, None, None, error, gr.Slider(maximum=100, value=0)
|
155 |
|
156 |
+
def update_frame_and_heatmap(frame_index, frames, scores):
|
157 |
if frames and 0 <= frame_index < len(frames):
|
158 |
+
heatmap_path = create_heatmap(scores, frame_index)
|
159 |
+
return frames[frame_index], heatmap_path
|
160 |
+
return None, None
|
161 |
|
162 |
video_input.upload(process_and_update,
|
163 |
inputs=[video_input, target_input],
|
164 |
outputs=[processed_frames, frame_scores, output_image, heatmap_output, error_output, frame_slider])
|
165 |
|
166 |
+
frame_slider.change(update_frame_and_heatmap,
|
167 |
+
inputs=[frame_slider, processed_frames, frame_scores],
|
168 |
+
outputs=[output_image, heatmap_output])
|
169 |
|
170 |
def use_sample_video():
|
171 |
sample_video_path = "Drone Video of African Wildlife Wild Botswan.mp4"
|
|
|
175 |
inputs=None,
|
176 |
outputs=[processed_frames, frame_scores, output_image, heatmap_output, error_output, frame_slider])
|
177 |
|
178 |
+
# Rearrange the layout
|
179 |
+
video_input.render()
|
180 |
+
target_input.render()
|
181 |
+
with gr.Row():
|
182 |
+
with gr.Column(scale=2):
|
183 |
+
output_image.render()
|
184 |
+
with gr.Column(scale=1):
|
185 |
+
sample_video_frame.render()
|
186 |
+
use_sample_button.render()
|
187 |
+
frame_slider.render()
|
188 |
+
heatmap_output.render()
|
189 |
+
error_output.render()
|
190 |
+
|
191 |
return app
|
192 |
|
193 |
if __name__ == "__main__":
|