reab5555 commited on
Commit
fa3925e
·
verified ·
1 Parent(s): bb2408e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -9
app.py CHANGED
@@ -7,7 +7,7 @@ import numpy as np
7
  import os
8
  import matplotlib.pyplot as plt
9
  from io import BytesIO
10
- import base64
11
 
12
  # Check if CUDA is available, otherwise use CPU
13
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
@@ -70,7 +70,7 @@ def process_video(video_path, target, progress=gr.Progress()):
70
  boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
71
 
72
  for box, score, label in zip(boxes, scores, labels):
73
- if score.item() >= 0.5:
74
  box = [round(i, 2) for i in box.tolist()]
75
  object_label = target
76
  confidence = round(score.item(), 3)
@@ -100,12 +100,11 @@ def create_heatmap(frame_scores):
100
  plt.yticks([])
101
  plt.tight_layout()
102
 
103
- buf = BytesIO()
104
- plt.savefig(buf, format='png')
105
- buf.seek(0)
106
  plt.close()
107
 
108
- return base64.b64encode(buf.getvalue()).decode('utf-8')
109
 
110
  def load_sample_frame(video_path):
111
  cap = cv2.VideoCapture(video_path)
@@ -120,7 +119,7 @@ def load_sample_frame(video_path):
120
 
121
  def gradio_app():
122
  with gr.Blocks() as app:
123
- gr.Markdown("# Video Object Detection with Owlv2")
124
 
125
  video_input = gr.Video(label="Upload Video")
126
  target_input = gr.Textbox(label="Target Object", value="Elephant")
@@ -138,8 +137,8 @@ def gradio_app():
138
  def process_and_update(video, target):
139
  frames, scores, error = process_video(video, target, progress_bar)
140
  if frames is not None:
141
- heatmap = create_heatmap(scores)
142
- return frames, scores, frames[0], heatmap, error, gr.Slider(maximum=len(frames) - 1, value=0)
143
  return None, None, None, None, error, gr.Slider(maximum=100, value=0)
144
 
145
  def update_frame(frame_index, frames):
 
7
  import os
8
  import matplotlib.pyplot as plt
9
  from io import BytesIO
10
+ import tempfile
11
 
12
  # Check if CUDA is available, otherwise use CPU
13
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
 
70
  boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
71
 
72
  for box, score, label in zip(boxes, scores, labels):
73
+ if score.item() >= 0.25:
74
  box = [round(i, 2) for i in box.tolist()]
75
  object_label = target
76
  confidence = round(score.item(), 3)
 
100
  plt.yticks([])
101
  plt.tight_layout()
102
 
103
+ with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp_file:
104
+ plt.savefig(tmp_file.name, format='png')
 
105
  plt.close()
106
 
107
+ return tmp_file.name
108
 
109
  def load_sample_frame(video_path):
110
  cap = cv2.VideoCapture(video_path)
 
119
 
120
  def gradio_app():
121
  with gr.Blocks() as app:
122
+ gr.Markdown("# Video Object Detection with Owlv2 (3 FPS, Batch Size 32)")
123
 
124
  video_input = gr.Video(label="Upload Video")
125
  target_input = gr.Textbox(label="Target Object", value="Elephant")
 
137
  def process_and_update(video, target):
138
  frames, scores, error = process_video(video, target, progress_bar)
139
  if frames is not None:
140
+ heatmap_path = create_heatmap(scores)
141
+ return frames, scores, frames[0], heatmap_path, error, gr.Slider(maximum=len(frames) - 1, value=0)
142
  return None, None, None, None, error, gr.Slider(maximum=100, value=0)
143
 
144
  def update_frame(frame_index, frames):