reab5555's picture
Update app.py
7d47fdc verified
raw
history blame
6.99 kB
import spaces
import gradio as gr
import cv2
from PIL import Image, ImageDraw, ImageFont
import torch
from transformers import Owlv2Processor, Owlv2ForObjectDetection
import numpy as np
import os
import matplotlib.pyplot as plt
from io import BytesIO
import tempfile
# Check if CUDA is available, otherwise use CPU
device = 'cuda' if torch.cuda.is_available() else 'cpu'
processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16")
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
@spaces.GPU(duration=120)
def process_video(video_path, target, progress=gr.Progress()):
if video_path is None:
return None, None, "Error: No video uploaded"
if not os.path.exists(video_path):
return None, None, f"Error: Video file not found at {video_path}"
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return None, None, f"Error: Unable to open video file at {video_path}"
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
original_fps = int(cap.get(cv2.CAP_PROP_FPS))
output_fps = 1
frame_duration = 1 / output_fps
video_duration = frame_count / original_fps
processed_frames = []
frame_scores = []
for time in progress.tqdm(np.arange(0, video_duration, frame_duration)):
frame_number = int(time * original_fps)
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
ret, img = cap.read()
if not ret:
break
pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
# Process single image
inputs = processor(text=[target], images=pil_img, return_tensors="pt", padding=True).to(device)
outputs = model(**inputs)
target_sizes = torch.Tensor([pil_img.size[::-1]])
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)
draw = ImageDraw.Draw(pil_img)
max_score = 0
try:
font = ImageFont.truetype("arial.ttf", 40)
except IOError:
font = ImageFont.load_default()
boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
for box, score, label in zip(boxes, scores, labels):
if score.item() >= 0.25:
box = [round(i, 2) for i in box.tolist()]
object_label = target
confidence = round(score.item(), 3)
annotation = f"{object_label}: {confidence}"
draw.rectangle(box, outline="red", width=2)
text_position = (box[0], box[1] - 30)
draw.text(text_position, annotation, fill="white", font=font)
max_score = max(max_score, confidence)
processed_frames.append(np.array(pil_img))
frame_scores.append(max_score)
cap.release()
return processed_frames, frame_scores, None
def create_heatmap(frame_scores, current_frame):
plt.figure(figsize=(12, 3))
plt.imshow([frame_scores], cmap='hot_r', aspect='auto') # 'hot_r' for reversed hot colormap
cbar = plt.colorbar(label='Confidence')
cbar.ax.yaxis.set_ticks_position('left')
cbar.ax.yaxis.set_label_position('left')
plt.title('Object Detection Heatmap')
plt.xlabel('Frame')
plt.yticks([])
# Add more frame numbers on x-axis
num_frames = len(frame_scores)
step = max(1, num_frames // 10) # Show at most 10 frame numbers
frame_numbers = range(0, num_frames, step)
plt.xticks(frame_numbers, [str(i) for i in frame_numbers])
# Add vertical line for current frame
plt.axvline(x=current_frame, color='blue', linestyle='--', linewidth=2)
plt.tight_layout()
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp_file:
plt.savefig(tmp_file.name, format='png', dpi=400, bbox_inches='tight')
plt.close()
return tmp_file.name
def load_sample_frame(video_path):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return None
ret, frame = cap.read()
cap.release()
if not ret:
return None
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return frame_rgb
def gradio_app():
with gr.Blocks() as app:
gr.Markdown("# Video Object Detection with Owlv2")
video_input = gr.Video(label="Upload Video")
target_input = gr.Textbox(label="Target Object", value="Elephant")
frame_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Frame", value=0)
heatmap_output = gr.Image(label="Detection Heatmap")
output_image = gr.Image(label="Processed Frame")
error_output = gr.Textbox(label="Error Messages", visible=False)
sample_video_frame = gr.Image(value=load_sample_frame("Drone Video of African Wildlife Wild Botswan.mp4"), label="Drone Video of African Wildlife Wild Botswan by wildimagesonline.com - Sample Video Frame")
use_sample_button = gr.Button("Use Sample Video")
progress_bar = gr.Progress()
processed_frames = gr.State([])
frame_scores = gr.State([])
def process_and_update(video, target):
frames, scores, error = process_video(video, target, progress_bar)
if frames is not None:
heatmap_path = create_heatmap(scores, 0) # Initial heatmap with current frame at 0
return frames, scores, frames[0], heatmap_path, error, gr.Slider(maximum=len(frames) - 1, value=0)
return None, None, None, None, error, gr.Slider(maximum=100, value=0)
def update_frame_and_heatmap(frame_index, frames, scores):
if frames and 0 <= frame_index < len(frames):
heatmap_path = create_heatmap(scores, frame_index)
return frames[frame_index], heatmap_path
return None, None
video_input.upload(process_and_update,
inputs=[video_input, target_input],
outputs=[processed_frames, frame_scores, output_image, heatmap_output, error_output, frame_slider])
frame_slider.change(update_frame_and_heatmap,
inputs=[frame_slider, processed_frames, frame_scores],
outputs=[output_image, heatmap_output])
def use_sample_video():
sample_video_path = "Drone Video of African Wildlife Wild Botswan.mp4"
return process_and_update(sample_video_path, "Elephant")
use_sample_button.click(use_sample_video,
inputs=None,
outputs=[processed_frames, frame_scores, output_image, heatmap_output, error_output, frame_slider])
# Layout
with gr.Row():
with gr.Column(scale=2):
output_image
with gr.Column(scale=1):
sample_video_frame
use_sample_button
return app
if __name__ == "__main__":
app = gradio_app()
app.launch(share=True)