Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,7 @@ device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
16 |
processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16")
|
17 |
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
|
18 |
|
19 |
-
@spaces.GPU(duration=
|
20 |
def process_video(video_path, target, progress=gr.Progress()):
|
21 |
if video_path is None:
|
22 |
return None, None, "Error: No video uploaded"
|
@@ -36,9 +36,6 @@ def process_video(video_path, target, progress=gr.Progress()):
|
|
36 |
|
37 |
processed_frames = []
|
38 |
frame_scores = []
|
39 |
-
batch_size = 2
|
40 |
-
batch_frames = []
|
41 |
-
batch_times = []
|
42 |
|
43 |
for time in progress.tqdm(np.arange(0, video_duration, frame_duration)):
|
44 |
frame_number = int(time * original_fps)
|
@@ -48,47 +45,39 @@ def process_video(video_path, target, progress=gr.Progress()):
|
|
48 |
break
|
49 |
|
50 |
pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
max_score = max(max_score, confidence)
|
86 |
-
|
87 |
-
processed_frames.append(np.array(image))
|
88 |
-
frame_scores.append(max_score)
|
89 |
-
|
90 |
-
batch_frames = []
|
91 |
-
batch_times = []
|
92 |
|
93 |
cap.release()
|
94 |
return processed_frames, frame_scores, None
|
|
|
16 |
processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16")
|
17 |
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
|
18 |
|
19 |
+
@spaces.GPU(duration=120)
|
20 |
def process_video(video_path, target, progress=gr.Progress()):
|
21 |
if video_path is None:
|
22 |
return None, None, "Error: No video uploaded"
|
|
|
36 |
|
37 |
processed_frames = []
|
38 |
frame_scores = []
|
|
|
|
|
|
|
39 |
|
40 |
for time in progress.tqdm(np.arange(0, video_duration, frame_duration)):
|
41 |
frame_number = int(time * original_fps)
|
|
|
45 |
break
|
46 |
|
47 |
pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
48 |
+
|
49 |
+
# Process single image
|
50 |
+
inputs = processor(text=[target], images=pil_img, return_tensors="pt", padding=True).to(device)
|
51 |
+
outputs = model(**inputs)
|
52 |
+
|
53 |
+
target_sizes = torch.Tensor([pil_img.size[::-1]])
|
54 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)
|
55 |
+
|
56 |
+
draw = ImageDraw.Draw(pil_img)
|
57 |
+
max_score = 0
|
58 |
+
|
59 |
+
try:
|
60 |
+
font = ImageFont.truetype("arial.ttf", 40)
|
61 |
+
except IOError:
|
62 |
+
font = ImageFont.load_default()
|
63 |
+
|
64 |
+
boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
|
65 |
+
|
66 |
+
for box, score, label in zip(boxes, scores, labels):
|
67 |
+
if score.item() >= 0.25:
|
68 |
+
box = [round(i, 2) for i in box.tolist()]
|
69 |
+
object_label = target
|
70 |
+
confidence = round(score.item(), 3)
|
71 |
+
annotation = f"{object_label}: {confidence}"
|
72 |
+
|
73 |
+
draw.rectangle(box, outline="red", width=2)
|
74 |
+
text_position = (box[0], box[1] - 30)
|
75 |
+
draw.text(text_position, annotation, fill="white", font=font)
|
76 |
+
|
77 |
+
max_score = max(max_score, confidence)
|
78 |
+
|
79 |
+
processed_frames.append(np.array(pil_img))
|
80 |
+
frame_scores.append(max_score)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
cap.release()
|
83 |
return processed_frames, frame_scores, None
|