reab5555 commited on
Commit
a8bbf69
·
verified ·
1 Parent(s): 28891a7

Update face_analysis.py

Browse files
Files changed (1) hide show
  1. face_analysis.py +40 -39
face_analysis.py CHANGED
@@ -1,40 +1,41 @@
1
- import torch
2
- import numpy as np
3
- from facenet_pytorch import InceptionResnetV1
4
- from sklearn.cluster import DBSCAN
5
- import os
6
- import shutil
7
-
8
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
9
- model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
10
-
11
- def get_face_embedding(face_img):
12
- face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
13
- face_tensor = (face_tensor - 0.5) / 0.5
14
- face_tensor = face_tensor.to(device)
15
- with torch.no_grad():
16
- embedding = model(face_tensor)
17
- return embedding.cpu().numpy().flatten()
18
-
19
- def cluster_faces(embeddings):
20
- if len(embeddings) < 2:
21
- print("Not enough faces for clustering. Assigning all to one cluster.")
22
- return np.zeros(len(embeddings), dtype=int)
23
-
24
- X = np.stack(embeddings)
25
- dbscan = DBSCAN(eps=0.5, min_samples=5, metric='cosine')
26
- clusters = dbscan.fit_predict(X)
27
-
28
- if np.all(clusters == -1):
29
- print("DBSCAN assigned all to noise. Considering as one cluster.")
30
- return np.zeros(len(embeddings), dtype=int)
31
-
32
- return clusters
33
-
34
- def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder):
35
- for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
36
- person_folder = os.path.join(organized_faces_folder, f"person_{cluster}")
37
- os.makedirs(person_folder, exist_ok=True)
38
- src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
39
- dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg")
 
40
  shutil.copy(src, dst)
 
1
+ import torch
2
+ import numpy as np
3
+ from facenet_pytorch import InceptionResnetV1
4
+ from sklearn.cluster import DBSCAN
5
+ import os
6
+ import shutil
7
+
8
+ @spaces.GPU(duration=300)
9
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
10
+ model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
11
+
12
+ def get_face_embedding(face_img):
13
+ face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
14
+ face_tensor = (face_tensor - 0.5) / 0.5
15
+ face_tensor = face_tensor.to(device)
16
+ with torch.no_grad():
17
+ embedding = model(face_tensor)
18
+ return embedding.cpu().numpy().flatten()
19
+
20
+ def cluster_faces(embeddings):
21
+ if len(embeddings) < 2:
22
+ print("Not enough faces for clustering. Assigning all to one cluster.")
23
+ return np.zeros(len(embeddings), dtype=int)
24
+
25
+ X = np.stack(embeddings)
26
+ dbscan = DBSCAN(eps=0.5, min_samples=5, metric='cosine')
27
+ clusters = dbscan.fit_predict(X)
28
+
29
+ if np.all(clusters == -1):
30
+ print("DBSCAN assigned all to noise. Considering as one cluster.")
31
+ return np.zeros(len(embeddings), dtype=int)
32
+
33
+ return clusters
34
+
35
+ def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder):
36
+ for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
37
+ person_folder = os.path.join(organized_faces_folder, f"person_{cluster}")
38
+ os.makedirs(person_folder, exist_ok=True)
39
+ src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
40
+ dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg")
41
  shutil.copy(src, dst)