Spaces:
Runtime error
Runtime error
Update face_analysis.py
Browse files- face_analysis.py +40 -39
face_analysis.py
CHANGED
|
@@ -1,40 +1,41 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import numpy as np
|
| 3 |
-
from facenet_pytorch import InceptionResnetV1
|
| 4 |
-
from sklearn.cluster import DBSCAN
|
| 5 |
-
import os
|
| 6 |
-
import shutil
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
face_tensor = (
|
| 14 |
-
face_tensor = face_tensor.
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
os.
|
| 38 |
-
|
| 39 |
-
|
|
|
|
| 40 |
shutil.copy(src, dst)
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from facenet_pytorch import InceptionResnetV1
|
| 4 |
+
from sklearn.cluster import DBSCAN
|
| 5 |
+
import os
|
| 6 |
+
import shutil
|
| 7 |
+
|
| 8 |
+
@spaces.GPU(duration=300)
|
| 9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 10 |
+
model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
|
| 11 |
+
|
| 12 |
+
def get_face_embedding(face_img):
|
| 13 |
+
face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
|
| 14 |
+
face_tensor = (face_tensor - 0.5) / 0.5
|
| 15 |
+
face_tensor = face_tensor.to(device)
|
| 16 |
+
with torch.no_grad():
|
| 17 |
+
embedding = model(face_tensor)
|
| 18 |
+
return embedding.cpu().numpy().flatten()
|
| 19 |
+
|
| 20 |
+
def cluster_faces(embeddings):
|
| 21 |
+
if len(embeddings) < 2:
|
| 22 |
+
print("Not enough faces for clustering. Assigning all to one cluster.")
|
| 23 |
+
return np.zeros(len(embeddings), dtype=int)
|
| 24 |
+
|
| 25 |
+
X = np.stack(embeddings)
|
| 26 |
+
dbscan = DBSCAN(eps=0.5, min_samples=5, metric='cosine')
|
| 27 |
+
clusters = dbscan.fit_predict(X)
|
| 28 |
+
|
| 29 |
+
if np.all(clusters == -1):
|
| 30 |
+
print("DBSCAN assigned all to noise. Considering as one cluster.")
|
| 31 |
+
return np.zeros(len(embeddings), dtype=int)
|
| 32 |
+
|
| 33 |
+
return clusters
|
| 34 |
+
|
| 35 |
+
def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder):
|
| 36 |
+
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
|
| 37 |
+
person_folder = os.path.join(organized_faces_folder, f"person_{cluster}")
|
| 38 |
+
os.makedirs(person_folder, exist_ok=True)
|
| 39 |
+
src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
|
| 40 |
+
dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg")
|
| 41 |
shutil.copy(src, dst)
|