Update anomaly_detection.py
Browse files- anomaly_detection.py +87 -87
anomaly_detection.py
CHANGED
@@ -1,88 +1,88 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.optim as optim
|
4 |
-
import numpy as np
|
5 |
-
from sklearn.preprocessing import MinMaxScaler
|
6 |
-
|
7 |
-
|
8 |
-
class Autoencoder(nn.Module):
|
9 |
-
def __init__(self, input_size):
|
10 |
-
super(Autoencoder, self).__init__()
|
11 |
-
self.encoder = nn.Sequential(
|
12 |
-
nn.Linear(input_size, 256),
|
13 |
-
nn.ReLU(),
|
14 |
-
nn.Linear(256, 128),
|
15 |
-
nn.ReLU(),
|
16 |
-
nn.Linear(128, 64),
|
17 |
-
nn.ReLU(),
|
18 |
-
nn.Linear(64, 32)
|
19 |
-
)
|
20 |
-
self.decoder = nn.Sequential(
|
21 |
-
nn.Linear(32, 64),
|
22 |
-
nn.ReLU(),
|
23 |
-
nn.Linear(64, 128),
|
24 |
-
nn.ReLU(),
|
25 |
-
nn.Linear(128, 256),
|
26 |
-
nn.ReLU(),
|
27 |
-
nn.Linear(256, input_size)
|
28 |
-
)
|
29 |
-
|
30 |
-
def forward(self, x):
|
31 |
-
batch_size, seq_len, _ = x.size()
|
32 |
-
x = x.view(batch_size * seq_len, -1)
|
33 |
-
encoded = self.encoder(x)
|
34 |
-
decoded = self.decoder(encoded)
|
35 |
-
return decoded.view(batch_size, seq_len, -1)
|
36 |
-
|
37 |
-
def anomaly_detection(X_embeddings, X_posture, epochs=200, patience=5):
|
38 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
39 |
-
|
40 |
-
# Normalize posture
|
41 |
-
scaler_posture = MinMaxScaler()
|
42 |
-
X_posture_scaled = scaler_posture.fit_transform(X_posture.reshape(-1, 1))
|
43 |
-
|
44 |
-
# Process facial embeddings
|
45 |
-
X_embeddings = torch.FloatTensor(X_embeddings).to(device)
|
46 |
-
if X_embeddings.dim() == 2:
|
47 |
-
X_embeddings = X_embeddings.unsqueeze(0)
|
48 |
-
|
49 |
-
# Process posture
|
50 |
-
X_posture_scaled = torch.FloatTensor(X_posture_scaled).to(device)
|
51 |
-
if X_posture_scaled.dim() == 2:
|
52 |
-
X_posture_scaled = X_posture_scaled.unsqueeze(0)
|
53 |
-
|
54 |
-
model_embeddings = Autoencoder(input_size=X_embeddings.shape[2]).to(device)
|
55 |
-
model_posture = Autoencoder(input_size=X_posture_scaled.shape[2]).to(device)
|
56 |
-
|
57 |
-
criterion = nn.MSELoss()
|
58 |
-
optimizer_embeddings = optim.Adam(model_embeddings.parameters())
|
59 |
-
optimizer_posture = optim.Adam(model_posture.parameters())
|
60 |
-
|
61 |
-
# Train models
|
62 |
-
for epoch in range(epochs):
|
63 |
-
for model, optimizer, X in [(model_embeddings, optimizer_embeddings, X_embeddings),
|
64 |
-
(model_posture, optimizer_posture, X_posture_scaled)]:
|
65 |
-
model.train()
|
66 |
-
optimizer.zero_grad()
|
67 |
-
output = model(X)
|
68 |
-
loss = criterion(output, X)
|
69 |
-
loss.backward()
|
70 |
-
optimizer.step()
|
71 |
-
|
72 |
-
# Compute MSE for embeddings and posture
|
73 |
-
model_embeddings.eval()
|
74 |
-
model_posture.eval()
|
75 |
-
with torch.no_grad():
|
76 |
-
reconstructed_embeddings = model_embeddings(X_embeddings).cpu().numpy()
|
77 |
-
reconstructed_posture = model_posture(X_posture_scaled).cpu().numpy()
|
78 |
-
|
79 |
-
mse_embeddings = np.mean(np.power(X_embeddings.cpu().numpy() - reconstructed_embeddings, 2), axis=2).squeeze()
|
80 |
-
mse_posture = np.mean(np.power(X_posture_scaled.cpu().numpy() - reconstructed_posture, 2), axis=2).squeeze()
|
81 |
-
|
82 |
-
return mse_embeddings, mse_posture
|
83 |
-
|
84 |
-
def determine_anomalies(mse_values, threshold):
|
85 |
-
mean = np.mean(mse_values)
|
86 |
-
std = np.std(mse_values)
|
87 |
-
anomalies = mse_values > (mean + threshold * std)
|
88 |
return anomalies
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
import numpy as np
|
5 |
+
from sklearn.preprocessing import MinMaxScaler
|
6 |
+
|
7 |
+
@spaces.GPU(duration=300)
|
8 |
+
class Autoencoder(nn.Module):
|
9 |
+
def __init__(self, input_size):
|
10 |
+
super(Autoencoder, self).__init__()
|
11 |
+
self.encoder = nn.Sequential(
|
12 |
+
nn.Linear(input_size, 256),
|
13 |
+
nn.ReLU(),
|
14 |
+
nn.Linear(256, 128),
|
15 |
+
nn.ReLU(),
|
16 |
+
nn.Linear(128, 64),
|
17 |
+
nn.ReLU(),
|
18 |
+
nn.Linear(64, 32)
|
19 |
+
)
|
20 |
+
self.decoder = nn.Sequential(
|
21 |
+
nn.Linear(32, 64),
|
22 |
+
nn.ReLU(),
|
23 |
+
nn.Linear(64, 128),
|
24 |
+
nn.ReLU(),
|
25 |
+
nn.Linear(128, 256),
|
26 |
+
nn.ReLU(),
|
27 |
+
nn.Linear(256, input_size)
|
28 |
+
)
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
batch_size, seq_len, _ = x.size()
|
32 |
+
x = x.view(batch_size * seq_len, -1)
|
33 |
+
encoded = self.encoder(x)
|
34 |
+
decoded = self.decoder(encoded)
|
35 |
+
return decoded.view(batch_size, seq_len, -1)
|
36 |
+
|
37 |
+
def anomaly_detection(X_embeddings, X_posture, epochs=200, patience=5):
|
38 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
39 |
+
|
40 |
+
# Normalize posture
|
41 |
+
scaler_posture = MinMaxScaler()
|
42 |
+
X_posture_scaled = scaler_posture.fit_transform(X_posture.reshape(-1, 1))
|
43 |
+
|
44 |
+
# Process facial embeddings
|
45 |
+
X_embeddings = torch.FloatTensor(X_embeddings).to(device)
|
46 |
+
if X_embeddings.dim() == 2:
|
47 |
+
X_embeddings = X_embeddings.unsqueeze(0)
|
48 |
+
|
49 |
+
# Process posture
|
50 |
+
X_posture_scaled = torch.FloatTensor(X_posture_scaled).to(device)
|
51 |
+
if X_posture_scaled.dim() == 2:
|
52 |
+
X_posture_scaled = X_posture_scaled.unsqueeze(0)
|
53 |
+
|
54 |
+
model_embeddings = Autoencoder(input_size=X_embeddings.shape[2]).to(device)
|
55 |
+
model_posture = Autoencoder(input_size=X_posture_scaled.shape[2]).to(device)
|
56 |
+
|
57 |
+
criterion = nn.MSELoss()
|
58 |
+
optimizer_embeddings = optim.Adam(model_embeddings.parameters())
|
59 |
+
optimizer_posture = optim.Adam(model_posture.parameters())
|
60 |
+
|
61 |
+
# Train models
|
62 |
+
for epoch in range(epochs):
|
63 |
+
for model, optimizer, X in [(model_embeddings, optimizer_embeddings, X_embeddings),
|
64 |
+
(model_posture, optimizer_posture, X_posture_scaled)]:
|
65 |
+
model.train()
|
66 |
+
optimizer.zero_grad()
|
67 |
+
output = model(X)
|
68 |
+
loss = criterion(output, X)
|
69 |
+
loss.backward()
|
70 |
+
optimizer.step()
|
71 |
+
|
72 |
+
# Compute MSE for embeddings and posture
|
73 |
+
model_embeddings.eval()
|
74 |
+
model_posture.eval()
|
75 |
+
with torch.no_grad():
|
76 |
+
reconstructed_embeddings = model_embeddings(X_embeddings).cpu().numpy()
|
77 |
+
reconstructed_posture = model_posture(X_posture_scaled).cpu().numpy()
|
78 |
+
|
79 |
+
mse_embeddings = np.mean(np.power(X_embeddings.cpu().numpy() - reconstructed_embeddings, 2), axis=2).squeeze()
|
80 |
+
mse_posture = np.mean(np.power(X_posture_scaled.cpu().numpy() - reconstructed_posture, 2), axis=2).squeeze()
|
81 |
+
|
82 |
+
return mse_embeddings, mse_posture
|
83 |
+
|
84 |
+
def determine_anomalies(mse_values, threshold):
|
85 |
+
mean = np.mean(mse_values)
|
86 |
+
std = np.std(mse_values)
|
87 |
+
anomalies = mse_values > (mean + threshold * std)
|
88 |
return anomalies
|