Update voice_analysis.py
Browse files- voice_analysis.py +12 -37
voice_analysis.py
CHANGED
@@ -24,51 +24,26 @@ def diarize_speakers(audio_path):
|
|
24 |
return diarization
|
25 |
|
26 |
def get_speaker_embeddings(audio_path, diarization, model_name="pyannote/embedding"):
|
27 |
-
|
28 |
-
|
29 |
-
if not hf_token:
|
30 |
-
raise ValueError("py_annote_hf_token environment variable is not set. Please check your Hugging Face Space's Variables and secrets section.")
|
31 |
-
|
32 |
-
model = Model.from_pretrained(model_name, use_auth_token=hf_token)
|
33 |
-
model.eval() # Set the model to evaluation mode
|
34 |
-
|
35 |
waveform, sample_rate = torchaudio.load(audio_path)
|
36 |
-
|
37 |
-
print(f"Waveform shape: {waveform.shape}")
|
38 |
-
|
39 |
-
# Convert stereo to mono if necessary
|
40 |
-
if waveform.shape[0] == 2:
|
41 |
-
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
42 |
|
43 |
embeddings = []
|
44 |
-
|
45 |
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
46 |
start_frame = int(turn.start * sample_rate)
|
47 |
end_frame = int(turn.end * sample_rate)
|
48 |
-
|
49 |
segment = waveform[:, start_frame:end_frame]
|
50 |
-
print(f"Segment shape before processing: {segment.shape}")
|
51 |
|
52 |
-
if segment.shape[1]
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
segment = segment[:, :10 * sample_rate]
|
63 |
-
|
64 |
-
print(f"Segment shape after processing: {segment.shape}")
|
65 |
-
|
66 |
-
with torch.no_grad():
|
67 |
-
embedding = model(segment) # Pass the tensor directly, not a dictionary
|
68 |
-
|
69 |
-
embeddings.append({"time": turn.start, "embedding": embedding.squeeze().cpu().numpy(), "speaker": speaker})
|
70 |
-
|
71 |
-
return embeddings
|
72 |
|
73 |
def align_voice_embeddings(voice_embeddings, frame_count, fps):
|
74 |
aligned_embeddings = []
|
|
|
24 |
return diarization
|
25 |
|
26 |
def get_speaker_embeddings(audio_path, diarization, model_name="pyannote/embedding"):
|
27 |
+
model = Model.from_pretrained(model_name, use_auth_token=os.environ.get("py_annote_hf_token"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
waveform, sample_rate = torchaudio.load(audio_path)
|
29 |
+
duration = waveform.shape[1] / sample_rate
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
embeddings = []
|
|
|
32 |
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
33 |
start_frame = int(turn.start * sample_rate)
|
34 |
end_frame = int(turn.end * sample_rate)
|
|
|
35 |
segment = waveform[:, start_frame:end_frame]
|
|
|
36 |
|
37 |
+
if segment.shape[1] > 0:
|
38 |
+
with torch.no_grad():
|
39 |
+
embedding = model(segment.to(model.device))
|
40 |
+
embeddings.append({"time": turn.start, "duration": turn.duration, "embedding": embedding.cpu().numpy(), "speaker": speaker})
|
41 |
+
|
42 |
+
# Ensure embeddings cover the entire duration
|
43 |
+
if embeddings and embeddings[-1]['time'] + embeddings[-1]['duration'] < duration:
|
44 |
+
embeddings.append({"time": duration, "duration": 0, "embedding": np.zeros_like(embeddings[0]['embedding']), "speaker": "silence"})
|
45 |
+
|
46 |
+
return embeddings, duration
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
def align_voice_embeddings(voice_embeddings, frame_count, fps):
|
49 |
aligned_embeddings = []
|