|
import matplotlib.pyplot as plt |
|
from mpl_toolkits.mplot3d import Axes3D |
|
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas |
|
import matplotlib.colors as mcolors |
|
from matplotlib.colors import LinearSegmentedColormap |
|
import seaborn as sns |
|
import numpy as np |
|
import pandas as pd |
|
import cv2 |
|
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeVideoClip, ImageClip, VideoClip, concatenate_videoclips |
|
from moviepy.video.fx.all import resize |
|
from moviepy.video.io.bindings import mplfig_to_npimage |
|
from PIL import Image, ImageDraw, ImageFont |
|
from matplotlib.patches import Rectangle |
|
from utils import seconds_to_timecode |
|
from anomaly_detection import determine_anomalies |
|
from scipy import interpolate |
|
import librosa |
|
import librosa.display |
|
import gradio as gr |
|
import os |
|
|
|
def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4): |
|
plt.figure(figsize=(16, 8), dpi=300) |
|
fig, ax = plt.subplots(figsize=(16, 8)) |
|
|
|
if 'Seconds' not in df.columns: |
|
df['Seconds'] = df['Timecode'].apply( |
|
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':'))))) |
|
|
|
|
|
min_length = min(len(df), len(mse_values)) |
|
df = df.iloc[:min_length].copy() |
|
mse_values = mse_values[:min_length] |
|
|
|
|
|
valid_mask = ~np.isnan(mse_values) |
|
df = df[valid_mask] |
|
mse_values = mse_values[valid_mask] |
|
|
|
|
|
def get_continuous_segments(seconds, values, max_gap=1): |
|
segments = [] |
|
current_segment = [] |
|
for i, (sec, val) in enumerate(zip(seconds, values)): |
|
if not current_segment or (sec - current_segment[-1][0] <= max_gap): |
|
current_segment.append((sec, val)) |
|
else: |
|
segments.append(current_segment) |
|
current_segment = [(sec, val)] |
|
if current_segment: |
|
segments.append(current_segment) |
|
return segments |
|
|
|
|
|
segments = get_continuous_segments(df['Seconds'], mse_values) |
|
|
|
|
|
for segment in segments: |
|
segment_seconds, segment_mse = zip(*segment) |
|
ax.scatter(segment_seconds, segment_mse, color=color, alpha=0.3, s=5) |
|
|
|
|
|
if len(segment) > 1: |
|
segment_df = pd.DataFrame({'Seconds': segment_seconds, 'MSE': segment_mse}) |
|
segment_df = segment_df.sort_values('Seconds') |
|
mean = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).mean() |
|
std = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).std() |
|
|
|
ax.plot(segment_df['Seconds'], mean, color=color, linewidth=0.5) |
|
ax.fill_between(segment_df['Seconds'], mean - std, mean + std, color=color, alpha=0.1) |
|
|
|
median = np.median(mse_values) |
|
ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline') |
|
|
|
threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values) |
|
ax.axhline(y=threshold, color='red', linestyle='--', label=f'Anomaly Threshold') |
|
ax.text(ax.get_xlim()[1], threshold, f'Anomaly Threshold', verticalalignment='center', horizontalalignment='left', color='red') |
|
|
|
anomalies = determine_anomalies(mse_values, anomaly_threshold) |
|
anomaly_frames = df['Frame'].iloc[anomalies].tolist() |
|
|
|
ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=20, zorder=5) |
|
|
|
anomaly_data = list(zip(df['Timecode'].iloc[anomalies], |
|
df['Seconds'].iloc[anomalies], |
|
mse_values[anomalies])) |
|
anomaly_data.sort(key=lambda x: x[1]) |
|
|
|
max_seconds = df['Seconds'].max() |
|
num_ticks = 80 |
|
tick_locations = np.linspace(0, max_seconds, num_ticks) |
|
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations] |
|
|
|
ax.set_xticks(tick_locations) |
|
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6) |
|
|
|
ax.set_xlabel('Timecode') |
|
ax.set_ylabel('Mean Squared Error') |
|
ax.set_title(title) |
|
|
|
ax.grid(True, linestyle='--', alpha=0.7) |
|
ax.legend() |
|
plt.tight_layout() |
|
plt.close() |
|
return fig, anomaly_frames |
|
|
|
|
|
def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'): |
|
plt.figure(figsize=(16, 3), dpi=300) |
|
fig, ax = plt.subplots(figsize=(16, 3)) |
|
|
|
ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7) |
|
ax.set_xlabel('Mean Squared Error') |
|
ax.set_ylabel('Number of Frames') |
|
ax.set_title(title) |
|
|
|
mean = np.mean(mse_values) |
|
std = np.std(mse_values) |
|
threshold = mean + anomaly_threshold * std |
|
|
|
ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2) |
|
|
|
plt.tight_layout() |
|
plt.close() |
|
return fig |
|
|
|
|
|
def plot_mse_heatmap(mse_values, title, df): |
|
plt.figure(figsize=(20, 3), dpi=300) |
|
fig, ax = plt.subplots(figsize=(20, 3)) |
|
|
|
|
|
mse_2d = mse_values.reshape(1, -1) |
|
|
|
|
|
sns.heatmap(mse_2d, cmap='YlOrRd', cbar=False, ax=ax) |
|
|
|
|
|
num_ticks = min(60, len(mse_values)) |
|
tick_locations = np.linspace(0, len(mse_values) - 1, num_ticks).astype(int) |
|
|
|
|
|
tick_locations = tick_locations[tick_locations < len(df)] |
|
|
|
tick_labels = [df['Timecode'].iloc[i] if i < len(df) else '' for i in tick_locations] |
|
|
|
ax.set_xticks(tick_locations) |
|
ax.set_xticklabels(tick_labels, rotation=90, ha='center', va='top') |
|
|
|
ax.set_title(title) |
|
|
|
|
|
ax.set_yticks([]) |
|
|
|
plt.tight_layout() |
|
plt.close() |
|
return fig |
|
|
|
def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3): |
|
plt.figure(figsize=(16, 8), dpi=300) |
|
fig, ax = plt.subplots(figsize=(16, 8)) |
|
|
|
df['Seconds'] = df['Timecode'].apply( |
|
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':'))))) |
|
|
|
posture_data = [(frame, score) for frame, score in posture_scores.items() if score is not None] |
|
posture_frames, posture_scores = zip(*posture_data) |
|
|
|
|
|
posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores}) |
|
|
|
|
|
posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner') |
|
|
|
ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5) |
|
mean = posture_df['Score'].rolling(window=10).mean() |
|
ax.plot(posture_df['Seconds'], mean, color=color, linewidth=0.5) |
|
|
|
ax.set_xlabel('Timecode') |
|
ax.set_ylabel('Posture Score') |
|
ax.set_title("Body Posture Over Time") |
|
|
|
ax.grid(True, linestyle='--', alpha=0.7) |
|
|
|
max_seconds = df['Seconds'].max() |
|
num_ticks = 80 |
|
tick_locations = np.linspace(0, max_seconds, num_ticks) |
|
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations] |
|
|
|
ax.set_xticks(tick_locations) |
|
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6) |
|
|
|
plt.tight_layout() |
|
plt.close() |
|
return fig |
|
|
|
|
|
def plot_stacked_mse_heatmaps(mse_face, mse_posture, mse_voice, df, title="Combined MSE Heatmaps"): |
|
plt.figure(figsize=(20, 6), dpi=300) |
|
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(20, 8), sharex=True, gridspec_kw={'height_ratios': [1, 1, 1.2], 'hspace': 0}) |
|
|
|
|
|
sns.heatmap(mse_face.reshape(1, -1), cmap='Reds', cbar=False, ax=ax1, xticklabels=False, yticklabels=False) |
|
ax1.set_ylabel('Face', rotation=0, ha='right', va='center') |
|
ax1.yaxis.set_label_coords(-0.01, 0.5) |
|
|
|
|
|
sns.heatmap(mse_posture.reshape(1, -1), cmap='Reds', cbar=False, ax=ax2, xticklabels=False, yticklabels=False) |
|
ax2.set_ylabel('Posture', rotation=0, ha='right', va='center') |
|
ax2.yaxis.set_label_coords(-0.01, 0.5) |
|
|
|
|
|
sns.heatmap(mse_voice.reshape(1, -1), cmap='Reds', cbar=False, ax=ax3, yticklabels=False) |
|
ax3.set_ylabel('Voice', rotation=0, ha='right', va='center') |
|
ax3.yaxis.set_label_coords(-0.01, 0.5) |
|
|
|
|
|
num_ticks = min(60, len(mse_voice)) |
|
tick_locations = np.linspace(0, len(mse_voice) - 1, num_ticks).astype(int) |
|
tick_labels = [df['Timecode'].iloc[i] if i < len(df) else '' for i in tick_locations] |
|
ax3.set_xticks(tick_locations) |
|
ax3.set_xticklabels(tick_labels, rotation=90, ha='center', va='top') |
|
|
|
|
|
for ax in [ax1, ax2, ax3]: |
|
ax.spines['top'].set_visible(False) |
|
ax.spines['right'].set_visible(False) |
|
ax.spines['bottom'].set_visible(False) |
|
ax.spines['left'].set_visible(False) |
|
|
|
plt.suptitle(title) |
|
plt.tight_layout() |
|
plt.close() |
|
return fig |
|
|
|
def plot_audio_waveform(audio_path, title="Audio Waveform"): |
|
|
|
y, sr = librosa.load(audio_path) |
|
|
|
|
|
plt.figure(figsize=(20, 4)) |
|
librosa.display.waveshow(y, sr=sr) |
|
|
|
|
|
max_time = librosa.get_duration(y=y, sr=sr) |
|
x_ticks = np.arange(0, max_time, max_time/10) |
|
x_labels = [f"{int(t//3600):02d}:{int((t%3600)//60):02d}:{int(t%60):02d}" for t in x_ticks] |
|
plt.xticks(x_ticks, x_labels, rotation=45) |
|
|
|
plt.title(title) |
|
plt.xlabel("Time") |
|
plt.ylabel("Amplitude") |
|
plt.tight_layout() |
|
|
|
return plt.gcf() |
|
|