|
import os |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
from facenet_pytorch import InceptionResnetV1, MTCNN |
|
import mediapipe as mp |
|
from fer import FER |
|
from sklearn.cluster import DBSCAN |
|
from sklearn.preprocessing import MinMaxScaler |
|
from sklearn.decomposition import PCA |
|
import umap |
|
import pandas as pd |
|
import matplotlib |
|
import matplotlib.pyplot as plt |
|
from moviepy.editor import VideoFileClip |
|
from PIL import Image |
|
import gradio as gr |
|
import tempfile |
|
import shutil |
|
import tensorflow as tf |
|
|
|
print(torch.__version__) |
|
print(torch.version.cuda) |
|
|
|
matplotlib.rcParams['figure.dpi'] = 400 |
|
matplotlib.rcParams['savefig.dpi'] = 400 |
|
|
|
|
|
device = 'cuda' |
|
|
|
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.98, 0.98, 0.98], min_face_size=100) |
|
model = InceptionResnetV1(pretrained='vggface2').eval().to(device) |
|
mp_face_mesh = mp.solutions.face_mesh |
|
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.7) |
|
emotion_detector = FER(mtcnn=False) |
|
|
|
|
|
def frame_to_timecode(frame_num, total_frames, duration): |
|
total_seconds = (frame_num / total_frames) * duration |
|
hours = int(total_seconds // 3600) |
|
minutes = int((total_seconds % 3600) // 60) |
|
seconds = int(total_seconds % 60) |
|
milliseconds = int((total_seconds - int(total_seconds)) * 1000) |
|
return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}" |
|
|
|
|
|
def get_face_embedding_and_emotion(face_img): |
|
face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255 |
|
face_tensor = (face_tensor - 0.5) / 0.5 |
|
face_tensor = face_tensor.to(device) |
|
with torch.no_grad(): |
|
embedding = model(face_tensor) |
|
|
|
emotions = emotion_detector.detect_emotions(face_img) |
|
if emotions: |
|
emotion_dict = emotions[0]['emotions'] |
|
else: |
|
emotion_dict = {e: 0 for e in ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']} |
|
|
|
return embedding.cpu().numpy().flatten(), emotion_dict |
|
|
|
|
|
def alignFace(img): |
|
img_raw = img.copy() |
|
results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) |
|
if not results.multi_face_landmarks: |
|
return None |
|
landmarks = results.multi_face_landmarks[0].landmark |
|
left_eye = np.array([[landmarks[33].x, landmarks[33].y], [landmarks[160].x, landmarks[160].y], |
|
[landmarks[158].x, landmarks[158].y], [landmarks[144].x, landmarks[144].y], |
|
[landmarks[153].x, landmarks[153].y], [landmarks[145].x, landmarks[145].y]]) |
|
right_eye = np.array([[landmarks[362].x, landmarks[362].y], [landmarks[385].x, landmarks[385].y], |
|
[landmarks[387].x, landmarks[387].y], [landmarks[263].x, landmarks[263].y], |
|
[landmarks[373].x, landmarks[373].y], [landmarks[380].x, landmarks[380].y]]) |
|
left_eye_center = left_eye.mean(axis=0).astype(np.int32) |
|
right_eye_center = right_eye.mean(axis=0).astype(np.int32) |
|
dY = right_eye_center[1] - left_eye_center[1] |
|
dX = right_eye_center[0] - left_eye_center[0] |
|
angle = np.degrees(np.arctan2(dY, dX)) |
|
desired_angle = 0 |
|
angle_diff = desired_angle - angle |
|
height, width = img_raw.shape[:2] |
|
center = (width // 2, height // 2) |
|
rotation_matrix = cv2.getRotationMatrix2D(center, angle_diff, 1) |
|
new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height)) |
|
return new_img |
|
|
|
|
|
def extract_frames(video_path, output_folder, desired_fps, progress_callback=None): |
|
os.makedirs(output_folder, exist_ok=True) |
|
clip = VideoFileClip(video_path) |
|
original_fps = clip.fps |
|
duration = clip.duration |
|
total_frames = int(duration * original_fps) |
|
step = max(1, original_fps / desired_fps) |
|
total_frames_to_extract = int(total_frames / step) |
|
|
|
frame_count = 0 |
|
for t in np.arange(0, duration, step / original_fps): |
|
frame = clip.get_frame(t) |
|
img = Image.fromarray(frame) |
|
img.save(os.path.join(output_folder, f"frame_{frame_count:04d}.jpg")) |
|
frame_count += 1 |
|
if progress_callback: |
|
progress = min(100, (frame_count / total_frames_to_extract) * 100) |
|
progress_callback(progress, f"Extracting frame") |
|
if frame_count >= total_frames_to_extract: |
|
break |
|
clip.close() |
|
return frame_count, original_fps |
|
|
|
|
|
def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size): |
|
embeddings_by_frame = {} |
|
emotions_by_frame = {} |
|
aligned_face_paths = [] |
|
frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')]) |
|
|
|
for i in range(0, len(frame_files), batch_size): |
|
batch_files = frame_files[i:i + batch_size] |
|
batch_frames = [] |
|
batch_nums = [] |
|
|
|
for frame_file in batch_files: |
|
frame_num = int(frame_file.split('_')[1].split('.')[0]) |
|
frame_path = os.path.join(frames_folder, frame_file) |
|
frame = cv2.imread(frame_path) |
|
if frame is not None: |
|
batch_frames.append(frame) |
|
batch_nums.append(frame_num) |
|
|
|
if batch_frames: |
|
batch_boxes, batch_probs = mtcnn.detect(batch_frames) |
|
|
|
for j, (frame, frame_num, boxes, probs) in enumerate( |
|
zip(batch_frames, batch_nums, batch_boxes, batch_probs)): |
|
if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99: |
|
x1, y1, x2, y2 = [int(b) for b in boxes[0]] |
|
face = frame[y1:y2, x1:x2] |
|
if face.size > 0: |
|
aligned_face = alignFace(face) |
|
if aligned_face is not None: |
|
aligned_face_resized = cv2.resize(aligned_face, (160, 160)) |
|
output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg") |
|
cv2.imwrite(output_path, aligned_face_resized) |
|
aligned_face_paths.append(output_path) |
|
embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized) |
|
embeddings_by_frame[frame_num] = embedding |
|
emotions_by_frame[frame_num] = emotion |
|
|
|
progress((i + len(batch_files)) / frame_count, |
|
f"Processing frames {i + 1} to {min(i + len(batch_files), frame_count)} of {frame_count}") |
|
|
|
return embeddings_by_frame, emotions_by_frame, aligned_face_paths |
|
|
|
|
|
def cluster_faces(embeddings): |
|
if len(embeddings) < 2: |
|
print("Not enough faces for clustering. Assigning all to one cluster.") |
|
return np.zeros(len(embeddings), dtype=int) |
|
|
|
X = np.stack(embeddings) |
|
|
|
dbscan = DBSCAN(eps=0.5, min_samples=5, metric='cosine') |
|
clusters = dbscan.fit_predict(X) |
|
|
|
if np.all(clusters == -1): |
|
print("DBSCAN assigned all to noise. Considering as one cluster.") |
|
return np.zeros(len(embeddings), dtype=int) |
|
|
|
return clusters |
|
|
|
|
|
def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder): |
|
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters): |
|
person_folder = os.path.join(organized_faces_folder, f"person_{cluster}") |
|
os.makedirs(person_folder, exist_ok=True) |
|
src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg") |
|
dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg") |
|
shutil.copy(src, dst) |
|
|
|
|
|
def find_optimal_components(embeddings, max_components=20): |
|
pca = PCA(n_components=max_components) |
|
pca.fit(embeddings) |
|
|
|
explained_variance_ratio = pca.explained_variance_ratio_ |
|
cumulative_variance_ratio = np.cumsum(explained_variance_ratio) |
|
|
|
|
|
plt.figure(figsize=(10, 6)) |
|
plt.plot(range(1, max_components + 1), cumulative_variance_ratio, 'bo-') |
|
plt.xlabel('Number of Components') |
|
plt.ylabel('Cumulative Explained Variance Ratio') |
|
plt.title('Explained Variance Ratio vs. Number of Components') |
|
plt.grid(True) |
|
|
|
|
|
differences = np.diff(cumulative_variance_ratio) |
|
elbow_point = np.argmin(differences) + 1 |
|
|
|
plt.axvline(x=elbow_point, color='r', linestyle='--', label=f'Elbow point: {elbow_point}') |
|
plt.legend() |
|
|
|
return elbow_point, plt |
|
|
|
|
|
def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder, |
|
video_duration): |
|
emotions = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'] |
|
person_data = {} |
|
|
|
for (frame_num, embedding), (_, emotion_dict), cluster in zip(embeddings_by_frame.items(), |
|
emotions_by_frame.items(), clusters): |
|
if cluster not in person_data: |
|
person_data[cluster] = [] |
|
person_data[cluster].append((frame_num, embedding, {e: emotion_dict[e] for e in emotions})) |
|
|
|
largest_cluster = max(person_data, key=lambda k: len(person_data[k])) |
|
|
|
data = person_data[largest_cluster] |
|
data.sort(key=lambda x: x[0]) |
|
frames, embeddings, emotions_data = zip(*data) |
|
|
|
embeddings_array = np.array(embeddings) |
|
np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array) |
|
|
|
|
|
optimal_components, _ = find_optimal_components(embeddings_array) |
|
|
|
reducer = umap.UMAP(n_components=optimal_components, random_state=1) |
|
embeddings_reduced = reducer.fit_transform(embeddings) |
|
|
|
scaler = MinMaxScaler(feature_range=(0, 1)) |
|
embeddings_reduced_normalized = scaler.fit_transform(embeddings_reduced) |
|
|
|
total_frames = max(frames) |
|
timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames] |
|
times_in_minutes = [frame / total_frames * video_duration / 60 for frame in frames] |
|
|
|
df_data = { |
|
'Frame': frames, |
|
'Timecode': timecodes, |
|
'Time (Minutes)': times_in_minutes, |
|
'Embedding_Index': range(len(embeddings)) |
|
} |
|
|
|
|
|
for i in range(len(embeddings[0])): |
|
df_data[f'Raw_Embedding_{i}'] = [embedding[i] for embedding in embeddings] |
|
|
|
for i in range(optimal_components): |
|
df_data[f'Comp {i + 1}'] = embeddings_reduced_normalized[:, i] |
|
|
|
for emotion in emotions: |
|
df_data[emotion] = [e[emotion] for e in emotions_data] |
|
|
|
df = pd.DataFrame(df_data) |
|
|
|
return df, largest_cluster |
|
|
|
|
|
class LSTMAutoencoder(nn.Module): |
|
def __init__(self, input_size, hidden_size=128, num_layers=2): |
|
super(LSTMAutoencoder, self).__init__() |
|
self.input_size = input_size |
|
self.hidden_size = hidden_size |
|
self.num_layers = num_layers |
|
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) |
|
self.fc = nn.Linear(hidden_size, input_size) |
|
|
|
def forward(self, x): |
|
outputs, (hidden, _) = self.lstm(x) |
|
out = self.fc(outputs) |
|
return out |
|
|
|
|
|
def lstm_anomaly_detection(X, feature_columns, raw_embedding_columns, epochs=100, batch_size=64): |
|
device = 'cuda' |
|
X = torch.FloatTensor(X).to(device) |
|
if X.dim() == 2: |
|
X = X.unsqueeze(0) |
|
elif X.dim() == 1: |
|
X = X.unsqueeze(0).unsqueeze(2) |
|
|
|
print(f"X shape after reshaping: {X.shape}") |
|
|
|
model = LSTMAutoencoder(input_size=X.shape[2]).to(device) |
|
criterion = nn.MSELoss() |
|
optimizer = optim.Adam(model.parameters()) |
|
|
|
for epoch in range(epochs): |
|
model.train() |
|
optimizer.zero_grad() |
|
output = model(X) |
|
loss = criterion(output, X) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
if epoch % 10 == 0: |
|
print(f"Epoch [{epoch}/{epochs}], Loss: {loss.item():.4f}") |
|
|
|
model.eval() |
|
with torch.no_grad(): |
|
reconstructed = model(X).squeeze(0).cpu().numpy() |
|
|
|
mse_all = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1) |
|
|
|
component_columns = [col for col in feature_columns if col.startswith('Comp')] |
|
component_indices = [feature_columns.index(col) for col in component_columns] |
|
|
|
if len(component_indices) > 0: |
|
mse_comp = np.mean( |
|
np.power(X.squeeze(0).cpu().numpy()[:, component_indices] - reconstructed[:, component_indices], 2), axis=1) |
|
else: |
|
mse_comp = mse_all |
|
|
|
raw_embedding_indices = [feature_columns.index(col) for col in raw_embedding_columns] |
|
mse_raw = np.mean(np.power(X.squeeze(0).cpu().numpy()[:, raw_embedding_indices] - reconstructed[:, raw_embedding_indices], 2), axis=1) |
|
|
|
return mse_all, mse_comp, mse_raw |
|
|
|
def embedding_anomaly_detection(embeddings, epochs=100, batch_size=64): |
|
device = 'cuda' |
|
X = torch.FloatTensor(embeddings).to(device) |
|
if X.dim() == 2: |
|
X = X.unsqueeze(0) |
|
elif X.dim() == 1: |
|
X = X.unsqueeze(0).unsqueeze(2) |
|
|
|
model = LSTMAutoencoder(input_size=X.shape[2]).to(device) |
|
criterion = nn.MSELoss() |
|
optimizer = optim.Adam(model.parameters()) |
|
|
|
for epoch in range(epochs): |
|
model.train() |
|
optimizer.zero_grad() |
|
output = model(X) |
|
loss = criterion(output, X) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
model.eval() |
|
with torch.no_grad(): |
|
reconstructed = model(X).squeeze(0).cpu().numpy() |
|
|
|
mse = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1) |
|
return mse |
|
|
|
def determine_anomalies(mse_values, threshold=4): |
|
mean = np.mean(mse_values) |
|
std = np.std(mse_values) |
|
anomalies = mse_values > (mean + threshold * std) |
|
return anomalies |
|
|
|
|
|
def plot_mse(df, mse_values, title, color='blue', time_threshold=1, hide_first_n=5): |
|
plt.figure(figsize=(16, 8), dpi=300) |
|
fig, ax = plt.subplots(figsize=(16, 8)) |
|
|
|
df['Seconds'] = df['Timecode'].apply( |
|
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':'))))) |
|
|
|
|
|
ax.scatter(df['Seconds'], mse_values, color=color, alpha=0.7, s=10) |
|
|
|
|
|
anomalies = determine_anomalies(mse_values) |
|
|
|
|
|
visible_anomalies = np.where(anomalies)[0][hide_first_n:] |
|
ax.scatter(df['Seconds'].iloc[visible_anomalies], mse_values[visible_anomalies], color='red', s=50, zorder=5) |
|
|
|
|
|
anomaly_data = list(zip(df['Timecode'].iloc[visible_anomalies], |
|
df['Seconds'].iloc[visible_anomalies], |
|
mse_values[visible_anomalies])) |
|
anomaly_data.sort(key=lambda x: x[1]) |
|
|
|
grouped_anomalies = [] |
|
current_group = [] |
|
for timecode, sec, mse in anomaly_data: |
|
if not current_group or sec - current_group[-1][1] <= time_threshold: |
|
current_group.append((timecode, sec, mse)) |
|
else: |
|
grouped_anomalies.append(current_group) |
|
current_group = [(timecode, sec, mse)] |
|
if current_group: |
|
grouped_anomalies.append(current_group) |
|
|
|
for group in grouped_anomalies: |
|
highest_mse_anomaly = max(group, key=lambda x: x[2]) |
|
timecode, sec, mse = highest_mse_anomaly |
|
ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10), |
|
ha='center', fontsize=8, color='red') |
|
|
|
|
|
mean_mse = np.mean(mse_values) |
|
ax.axhline(y=mean_mse, color='black', linestyle='--', linewidth=1) |
|
ax.text(df['Seconds'].max(), mean_mse, f'Baseline ({mean_mse:.6f})', |
|
verticalalignment='bottom', horizontalalignment='right', color='black', fontsize=8) |
|
|
|
|
|
max_seconds = df['Seconds'].max() |
|
num_ticks = 100 |
|
tick_locations = np.linspace(0, max_seconds, num_ticks) |
|
tick_labels = [frame_to_timecode(int(s * df['Frame'].max() / max_seconds), df['Frame'].max(), max_seconds) |
|
for s in tick_locations] |
|
|
|
ax.set_xticks(tick_locations) |
|
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6) |
|
|
|
ax.set_xlabel('Time') |
|
ax.set_ylabel('Mean Squared Error') |
|
ax.set_title(title) |
|
|
|
ax.grid(True, linestyle='--', alpha=0.7) |
|
plt.tight_layout() |
|
plt.close() |
|
return fig |
|
|
|
def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster): |
|
face_samples = {"most_frequent": [], "others": []} |
|
for cluster_folder in sorted(os.listdir(organized_faces_folder)): |
|
if cluster_folder.startswith("person_"): |
|
person_folder = os.path.join(organized_faces_folder, cluster_folder) |
|
face_files = sorted([f for f in os.listdir(person_folder) if f.endswith('.jpg')]) |
|
if face_files: |
|
cluster_id = int(cluster_folder.split('_')[1]) |
|
if cluster_id == largest_cluster: |
|
for i, sample in enumerate(face_files): |
|
face_path = os.path.join(person_folder, sample) |
|
output_path = os.path.join(output_folder, f"face_sample_most_frequent_{i:04d}.jpg") |
|
face_img = cv2.imread(face_path) |
|
if face_img is not None: |
|
small_face = cv2.resize(face_img, (160, 160)) |
|
cv2.imwrite(output_path, small_face) |
|
face_samples["most_frequent"].append(output_path) |
|
else: |
|
for i, sample in enumerate(face_files): |
|
face_path = os.path.join(person_folder, sample) |
|
output_path = os.path.join(output_folder, f"face_sample_other_{cluster_id:02d}_{i:04d}.jpg") |
|
face_img = cv2.imread(face_path) |
|
if face_img is not None: |
|
small_face = cv2.resize(face_img, (160, 160)) |
|
cv2.imwrite(output_path, small_face) |
|
face_samples["others"].append(output_path) |
|
return face_samples |
|
|
|
def process_video(video_path, desired_fps, batch_size, progress=gr.Progress()): |
|
output_folder = "output" |
|
os.makedirs(output_folder, exist_ok=True) |
|
|
|
|
|
mse_plot_all = None |
|
mse_plot_comp = None |
|
mse_plot_raw = None |
|
emotion_plots = [None] * 6 |
|
face_samples = {"most_frequent": [], "others": []} |
|
|
|
with tempfile.TemporaryDirectory() as temp_dir: |
|
aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces') |
|
organized_faces_folder = os.path.join(temp_dir, 'organized_faces') |
|
os.makedirs(aligned_faces_folder, exist_ok=True) |
|
os.makedirs(organized_faces_folder, exist_ok=True) |
|
|
|
clip = VideoFileClip(video_path) |
|
video_duration = clip.duration |
|
clip.close() |
|
|
|
progress(0, "Starting frame extraction") |
|
frames_folder = os.path.join(temp_dir, 'extracted_frames') |
|
|
|
def extraction_progress(percent, message): |
|
progress(percent / 100, f"Extracting frames") |
|
|
|
frame_count, original_fps = extract_frames(video_path, frames_folder, desired_fps, extraction_progress) |
|
|
|
progress(1, "Frame extraction complete") |
|
progress(0.3, "Processing frames") |
|
embeddings_by_frame, emotions_by_frame, aligned_face_paths = process_frames(frames_folder, aligned_faces_folder, |
|
frame_count, |
|
progress, batch_size) |
|
|
|
if not aligned_face_paths: |
|
return ("No faces were extracted from the video.", |
|
None, None, None, None, None, None, None, None, None, [], []) |
|
|
|
progress(0.6, "Clustering faces") |
|
embeddings = [embedding for _, embedding in embeddings_by_frame.items()] |
|
clusters = cluster_faces(embeddings) |
|
num_clusters = len(set(clusters)) |
|
|
|
progress(0.7, "Organizing faces") |
|
organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder) |
|
|
|
progress(0.8, "Saving person data") |
|
df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, |
|
original_fps, temp_dir, video_duration) |
|
|
|
progress(0.85, "Getting face samples") |
|
face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster) |
|
|
|
progress(0.9, "Performing anomaly detection") |
|
feature_columns = [col for col in df.columns if |
|
col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']] |
|
raw_embedding_columns = [col for col in df.columns if col.startswith('Raw_Embedding_')] |
|
X = df[feature_columns].values |
|
|
|
try: |
|
mse_all, mse_comp, mse_raw = lstm_anomaly_detection( |
|
X, feature_columns, raw_embedding_columns, batch_size=batch_size) |
|
|
|
progress(0.95, "Generating plots") |
|
mse_plot_all = plot_mse(df, mse_all, "Facial Features + Emotions", color='blue', hide_first_n=5) |
|
mse_plot_comp = plot_mse(df, mse_comp, "Facial Features", color='deepskyblue', hide_first_n=5) |
|
mse_plot_raw = plot_mse(df, mse_raw, "Facial Embeddings", color='steelblue', hide_first_n=5) |
|
|
|
emotion_plots = [ |
|
plot_mse(df, embedding_anomaly_detection(df[emotion].values.reshape(-1, 1)), |
|
f"MSE: {emotion.capitalize()}", color=color, hide_first_n=5) |
|
for emotion, color in zip(['fear', 'sad', 'angry', 'happy', 'surprise', 'neutral'], |
|
['purple', 'green', 'orange', 'darkblue', 'gold', 'grey']) |
|
] |
|
|
|
except Exception as e: |
|
print(f"Error details: {str(e)}") |
|
return (f"Error in anomaly detection: {str(e)}", |
|
None, None, None, None, None, None, None, None, None, [], []) |
|
|
|
progress(1.0, "Preparing results") |
|
results = f"Number of persons/clusters detected: {num_clusters}\n\n" |
|
results += f"Breakdown of persons/clusters:\n" |
|
for cluster_id in range(num_clusters): |
|
results += f"Person/Cluster {cluster_id + 1}: {len([c for c in clusters if c == cluster_id])} frames\n" |
|
|
|
return ( |
|
results, |
|
mse_plot_all, |
|
mse_plot_comp, |
|
mse_plot_raw, |
|
*emotion_plots, |
|
face_samples["most_frequent"], |
|
face_samples["others"] |
|
) |
|
|
|
|
|
gallery_outputs = [ |
|
gr.Gallery(label="Most Frequent Person Random Samples", columns=5, rows=2, height="auto"), |
|
gr.Gallery(label="Other Persons Random Samples", columns=5, rows=1, height="auto") |
|
] |
|
|
|
|
|
iface = gr.Interface( |
|
fn=process_video, |
|
inputs=[ |
|
gr.Video(), |
|
gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Desired FPS"), |
|
gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size") |
|
], |
|
outputs=[ |
|
gr.Textbox(label="Anomaly Detection Results"), |
|
gr.Plot(label="MSE: Facial Features + Emotions"), |
|
gr.Plot(label="MSE: Facial Features"), |
|
gr.Plot(label="MSE: Facial Embeddings"), |
|
gr.Plot(label="MSE: Fear"), |
|
gr.Plot(label="MSE: Sad"), |
|
gr.Plot(label="MSE: Angry"), |
|
gr.Plot(label="MSE: Happy"), |
|
gr.Plot(label="MSE: Surprise"), |
|
gr.Plot(label="MSE: Neutral"), |
|
] + gallery_outputs, |
|
title="Facial Expressions Anomaly Detection", |
|
description=""" |
|
This application detects anomalies in facial expressions and emotions from a video input. |
|
It identifies distinct persons in the video and provides sample faces for each, with multiple samples for the most frequent person. |
|
|
|
The graphs show Mean Squared Error (MSE) values for different aspects of facial expressions and emotions over time. |
|
Each point represents a frame, with red points indicating detected anomalies. |
|
Anomalies are annotated with their corresponding timecodes. |
|
Higher MSE values indicate more unusual or anomalous expressions or emotions at that point in the video. |
|
|
|
Adjust the parameters as needed: |
|
- Desired FPS: Frames per second to analyze (lower for faster processing) |
|
- Batch Size: Affects processing speed and GPU memory usage |
|
""", |
|
allow_flagging="never" |
|
) |
|
|
|
|
|
iface.launch() |