Spaces:
Runtime error
Runtime error
| import os | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.optim as optim | |
| from facenet_pytorch import InceptionResnetV1, MTCNN | |
| import mediapipe as mp | |
| from fer import FER | |
| from sklearn.cluster import DBSCAN | |
| from sklearn.preprocessing import MinMaxScaler | |
| from sklearn.decomposition import PCA | |
| import umap | |
| import pandas as pd | |
| import matplotlib | |
| import matplotlib.pyplot as plt | |
| from moviepy.editor import VideoFileClip | |
| from PIL import Image | |
| import gradio as gr | |
| import tempfile | |
| import shutil | |
| import tensorflow as tf | |
| print(torch.__version__) | |
| print(torch.version.cuda) | |
| matplotlib.rcParams['figure.dpi'] = 400 | |
| matplotlib.rcParams['savefig.dpi'] = 400 | |
| # Initialize models and other global variables | |
| device = 'cuda' | |
| mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.98, 0.98, 0.98], min_face_size=100) | |
| model = InceptionResnetV1(pretrained='vggface2').eval().to(device) | |
| mp_face_mesh = mp.solutions.face_mesh | |
| face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.7) | |
| emotion_detector = FER(mtcnn=False) | |
| def frame_to_timecode(frame_num, total_frames, duration): | |
| total_seconds = (frame_num / total_frames) * duration | |
| hours = int(total_seconds // 3600) | |
| minutes = int((total_seconds % 3600) // 60) | |
| seconds = int(total_seconds % 60) | |
| milliseconds = int((total_seconds - int(total_seconds)) * 1000) | |
| return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}" | |
| def get_face_embedding_and_emotion(face_img): | |
| face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255 | |
| face_tensor = (face_tensor - 0.5) / 0.5 | |
| face_tensor = face_tensor.to(device) | |
| with torch.no_grad(): | |
| embedding = model(face_tensor) | |
| emotions = emotion_detector.detect_emotions(face_img) | |
| if emotions: | |
| emotion_dict = emotions[0]['emotions'] | |
| else: | |
| emotion_dict = {e: 0 for e in ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']} | |
| return embedding.cpu().numpy().flatten(), emotion_dict | |
| def alignFace(img): | |
| img_raw = img.copy() | |
| results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
| if not results.multi_face_landmarks: | |
| return None | |
| landmarks = results.multi_face_landmarks[0].landmark | |
| left_eye = np.array([[landmarks[33].x, landmarks[33].y], [landmarks[160].x, landmarks[160].y], | |
| [landmarks[158].x, landmarks[158].y], [landmarks[144].x, landmarks[144].y], | |
| [landmarks[153].x, landmarks[153].y], [landmarks[145].x, landmarks[145].y]]) | |
| right_eye = np.array([[landmarks[362].x, landmarks[362].y], [landmarks[385].x, landmarks[385].y], | |
| [landmarks[387].x, landmarks[387].y], [landmarks[263].x, landmarks[263].y], | |
| [landmarks[373].x, landmarks[373].y], [landmarks[380].x, landmarks[380].y]]) | |
| left_eye_center = left_eye.mean(axis=0).astype(np.int32) | |
| right_eye_center = right_eye.mean(axis=0).astype(np.int32) | |
| dY = right_eye_center[1] - left_eye_center[1] | |
| dX = right_eye_center[0] - left_eye_center[0] | |
| angle = np.degrees(np.arctan2(dY, dX)) | |
| desired_angle = 0 | |
| angle_diff = desired_angle - angle | |
| height, width = img_raw.shape[:2] | |
| center = (width // 2, height // 2) | |
| rotation_matrix = cv2.getRotationMatrix2D(center, angle_diff, 1) | |
| new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height)) | |
| return new_img | |
| def extract_frames(video_path, output_folder, desired_fps, progress_callback=None): | |
| os.makedirs(output_folder, exist_ok=True) | |
| clip = VideoFileClip(video_path) | |
| original_fps = clip.fps | |
| duration = clip.duration | |
| total_frames = int(duration * original_fps) | |
| step = max(1, original_fps / desired_fps) | |
| total_frames_to_extract = int(total_frames / step) | |
| frame_count = 0 | |
| for t in np.arange(0, duration, step / original_fps): | |
| frame = clip.get_frame(t) | |
| img = Image.fromarray(frame) | |
| img.save(os.path.join(output_folder, f"frame_{frame_count:04d}.jpg")) | |
| frame_count += 1 | |
| if progress_callback: | |
| progress = min(100, (frame_count / total_frames_to_extract) * 100) | |
| progress_callback(progress, f"Extracting frame") | |
| if frame_count >= total_frames_to_extract: | |
| break | |
| clip.close() | |
| return frame_count, original_fps | |
| def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size): | |
| embeddings_by_frame = {} | |
| emotions_by_frame = {} | |
| aligned_face_paths = [] | |
| frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')]) | |
| for i in range(0, len(frame_files), batch_size): | |
| batch_files = frame_files[i:i + batch_size] | |
| batch_frames = [] | |
| batch_nums = [] | |
| for frame_file in batch_files: | |
| frame_num = int(frame_file.split('_')[1].split('.')[0]) | |
| frame_path = os.path.join(frames_folder, frame_file) | |
| frame = cv2.imread(frame_path) | |
| if frame is not None: | |
| batch_frames.append(frame) | |
| batch_nums.append(frame_num) | |
| if batch_frames: | |
| batch_boxes, batch_probs = mtcnn.detect(batch_frames) | |
| for j, (frame, frame_num, boxes, probs) in enumerate( | |
| zip(batch_frames, batch_nums, batch_boxes, batch_probs)): | |
| if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99: | |
| x1, y1, x2, y2 = [int(b) for b in boxes[0]] | |
| face = frame[y1:y2, x1:x2] | |
| if face.size > 0: | |
| aligned_face = alignFace(face) | |
| if aligned_face is not None: | |
| aligned_face_resized = cv2.resize(aligned_face, (160, 160)) | |
| output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg") | |
| cv2.imwrite(output_path, aligned_face_resized) | |
| aligned_face_paths.append(output_path) | |
| embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized) | |
| embeddings_by_frame[frame_num] = embedding | |
| emotions_by_frame[frame_num] = emotion | |
| progress((i + len(batch_files)) / frame_count, | |
| f"Processing frames {i + 1} to {min(i + len(batch_files), frame_count)} of {frame_count}") | |
| return embeddings_by_frame, emotions_by_frame, aligned_face_paths | |
| def cluster_faces(embeddings): | |
| if len(embeddings) < 2: | |
| print("Not enough faces for clustering. Assigning all to one cluster.") | |
| return np.zeros(len(embeddings), dtype=int) | |
| X = np.stack(embeddings) | |
| dbscan = DBSCAN(eps=0.5, min_samples=5, metric='cosine') | |
| clusters = dbscan.fit_predict(X) | |
| if np.all(clusters == -1): | |
| print("DBSCAN assigned all to noise. Considering as one cluster.") | |
| return np.zeros(len(embeddings), dtype=int) | |
| return clusters | |
| def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder): | |
| for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters): | |
| person_folder = os.path.join(organized_faces_folder, f"person_{cluster}") | |
| os.makedirs(person_folder, exist_ok=True) | |
| src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg") | |
| dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg") | |
| shutil.copy(src, dst) | |
| def find_optimal_components(embeddings, max_components=20): | |
| pca = PCA(n_components=max_components) | |
| pca.fit(embeddings) | |
| explained_variance_ratio = pca.explained_variance_ratio_ | |
| cumulative_variance_ratio = np.cumsum(explained_variance_ratio) | |
| # Plot explained variance ratio | |
| plt.figure(figsize=(10, 6)) | |
| plt.plot(range(1, max_components + 1), cumulative_variance_ratio, 'bo-') | |
| plt.xlabel('Number of Components') | |
| plt.ylabel('Cumulative Explained Variance Ratio') | |
| plt.title('Explained Variance Ratio vs. Number of Components') | |
| plt.grid(True) | |
| # Find elbow point | |
| differences = np.diff(cumulative_variance_ratio) | |
| elbow_point = np.argmin(differences) + 1 | |
| plt.axvline(x=elbow_point, color='r', linestyle='--', label=f'Elbow point: {elbow_point}') | |
| plt.legend() | |
| return elbow_point, plt | |
| def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder, | |
| video_duration): | |
| emotions = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'] | |
| person_data = {} | |
| for (frame_num, embedding), (_, emotion_dict), cluster in zip(embeddings_by_frame.items(), | |
| emotions_by_frame.items(), clusters): | |
| if cluster not in person_data: | |
| person_data[cluster] = [] | |
| person_data[cluster].append((frame_num, embedding, {e: emotion_dict[e] for e in emotions})) | |
| largest_cluster = max(person_data, key=lambda k: len(person_data[k])) | |
| data = person_data[largest_cluster] | |
| data.sort(key=lambda x: x[0]) | |
| frames, embeddings, emotions_data = zip(*data) | |
| embeddings_array = np.array(embeddings) | |
| np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array) | |
| # Find optimal number of components | |
| optimal_components, _ = find_optimal_components(embeddings_array) | |
| reducer = umap.UMAP(n_components=optimal_components, random_state=1) | |
| embeddings_reduced = reducer.fit_transform(embeddings) | |
| scaler = MinMaxScaler(feature_range=(0, 1)) | |
| embeddings_reduced_normalized = scaler.fit_transform(embeddings_reduced) | |
| total_frames = max(frames) | |
| timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames] | |
| times_in_minutes = [frame / total_frames * video_duration / 60 for frame in frames] | |
| df_data = { | |
| 'Frame': frames, | |
| 'Timecode': timecodes, | |
| 'Time (Minutes)': times_in_minutes, | |
| 'Embedding_Index': range(len(embeddings)) | |
| } | |
| # Add raw embeddings | |
| for i in range(len(embeddings[0])): | |
| df_data[f'Raw_Embedding_{i}'] = [embedding[i] for embedding in embeddings] | |
| for i in range(optimal_components): | |
| df_data[f'Comp {i + 1}'] = embeddings_reduced_normalized[:, i] | |
| for emotion in emotions: | |
| df_data[emotion] = [e[emotion] for e in emotions_data] | |
| df = pd.DataFrame(df_data) | |
| return df, largest_cluster | |
| class LSTMAutoencoder(nn.Module): | |
| def __init__(self, input_size, hidden_size=128, num_layers=2): | |
| super(LSTMAutoencoder, self).__init__() | |
| self.input_size = input_size | |
| self.hidden_size = hidden_size | |
| self.num_layers = num_layers | |
| self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) | |
| self.fc = nn.Linear(hidden_size, input_size) | |
| def forward(self, x): | |
| outputs, (hidden, _) = self.lstm(x) | |
| out = self.fc(outputs) | |
| return out | |
| def lstm_anomaly_detection(X, feature_columns, raw_embedding_columns, epochs=100, batch_size=64): | |
| device = 'cuda' | |
| X = torch.FloatTensor(X).to(device) | |
| if X.dim() == 2: | |
| X = X.unsqueeze(0) | |
| elif X.dim() == 1: | |
| X = X.unsqueeze(0).unsqueeze(2) | |
| print(f"X shape after reshaping: {X.shape}") | |
| model = LSTMAutoencoder(input_size=X.shape[2]).to(device) | |
| criterion = nn.MSELoss() | |
| optimizer = optim.Adam(model.parameters()) | |
| for epoch in range(epochs): | |
| model.train() | |
| optimizer.zero_grad() | |
| output = model(X) | |
| loss = criterion(output, X) | |
| loss.backward() | |
| optimizer.step() | |
| if epoch % 10 == 0: | |
| print(f"Epoch [{epoch}/{epochs}], Loss: {loss.item():.4f}") | |
| model.eval() | |
| with torch.no_grad(): | |
| reconstructed = model(X).squeeze(0).cpu().numpy() | |
| mse_all = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1) | |
| component_columns = [col for col in feature_columns if col.startswith('Comp')] | |
| component_indices = [feature_columns.index(col) for col in component_columns] | |
| if len(component_indices) > 0: | |
| mse_comp = np.mean( | |
| np.power(X.squeeze(0).cpu().numpy()[:, component_indices] - reconstructed[:, component_indices], 2), axis=1) | |
| else: | |
| mse_comp = mse_all | |
| raw_embedding_indices = [feature_columns.index(col) for col in raw_embedding_columns] | |
| mse_raw = np.mean(np.power(X.squeeze(0).cpu().numpy()[:, raw_embedding_indices] - reconstructed[:, raw_embedding_indices], 2), axis=1) | |
| return mse_all, mse_comp, mse_raw | |
| def embedding_anomaly_detection(embeddings, epochs=100, batch_size=64): | |
| device = 'cuda' | |
| X = torch.FloatTensor(embeddings).to(device) | |
| if X.dim() == 2: | |
| X = X.unsqueeze(0) | |
| elif X.dim() == 1: | |
| X = X.unsqueeze(0).unsqueeze(2) | |
| model = LSTMAutoencoder(input_size=X.shape[2]).to(device) | |
| criterion = nn.MSELoss() | |
| optimizer = optim.Adam(model.parameters()) | |
| for epoch in range(epochs): | |
| model.train() | |
| optimizer.zero_grad() | |
| output = model(X) | |
| loss = criterion(output, X) | |
| loss.backward() | |
| optimizer.step() | |
| model.eval() | |
| with torch.no_grad(): | |
| reconstructed = model(X).squeeze(0).cpu().numpy() | |
| mse = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1) | |
| return mse | |
| def determine_anomalies(mse_values, threshold=4): | |
| mean = np.mean(mse_values) | |
| std = np.std(mse_values) | |
| anomalies = mse_values > (mean + threshold * std) | |
| return anomalies | |
| def plot_mse(df, mse_values, title, color='blue', time_threshold=1, hide_first_n=5): | |
| plt.figure(figsize=(16, 8), dpi=300) | |
| fig, ax = plt.subplots(figsize=(16, 8)) | |
| df['Seconds'] = df['Timecode'].apply( | |
| lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':'))))) | |
| # Plot all points | |
| ax.scatter(df['Seconds'], mse_values, color=color, alpha=0.7, s=10) | |
| # Determine anomalies | |
| anomalies = determine_anomalies(mse_values) | |
| # Hide the first n anomalies | |
| visible_anomalies = np.where(anomalies)[0][hide_first_n:] | |
| ax.scatter(df['Seconds'].iloc[visible_anomalies], mse_values[visible_anomalies], color='red', s=50, zorder=5) | |
| # Group closely occurring anomalies and annotate only the highest MSE | |
| anomaly_data = list(zip(df['Timecode'].iloc[visible_anomalies], | |
| df['Seconds'].iloc[visible_anomalies], | |
| mse_values[visible_anomalies])) | |
| anomaly_data.sort(key=lambda x: x[1]) # Sort by seconds | |
| grouped_anomalies = [] | |
| current_group = [] | |
| for timecode, sec, mse in anomaly_data: | |
| if not current_group or sec - current_group[-1][1] <= time_threshold: | |
| current_group.append((timecode, sec, mse)) | |
| else: | |
| grouped_anomalies.append(current_group) | |
| current_group = [(timecode, sec, mse)] | |
| if current_group: | |
| grouped_anomalies.append(current_group) | |
| for group in grouped_anomalies: | |
| highest_mse_anomaly = max(group, key=lambda x: x[2]) | |
| timecode, sec, mse = highest_mse_anomaly | |
| ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10), | |
| ha='center', fontsize=8, color='red') | |
| # Add baseline (mean MSE) line | |
| mean_mse = np.mean(mse_values) | |
| ax.axhline(y=mean_mse, color='black', linestyle='--', linewidth=1) | |
| ax.text(df['Seconds'].max(), mean_mse, f'Baseline ({mean_mse:.6f})', | |
| verticalalignment='bottom', horizontalalignment='right', color='black', fontsize=8) | |
| # Set x-axis labels to timecodes | |
| max_seconds = df['Seconds'].max() | |
| num_ticks = 100 | |
| tick_locations = np.linspace(0, max_seconds, num_ticks) | |
| tick_labels = [frame_to_timecode(int(s * df['Frame'].max() / max_seconds), df['Frame'].max(), max_seconds) | |
| for s in tick_locations] | |
| ax.set_xticks(tick_locations) | |
| ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6) | |
| ax.set_xlabel('Time') | |
| ax.set_ylabel('Mean Squared Error') | |
| ax.set_title(title) | |
| ax.grid(True, linestyle='--', alpha=0.7) | |
| plt.tight_layout() | |
| plt.close() | |
| return fig | |
| def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster): | |
| face_samples = {"most_frequent": [], "others": []} | |
| for cluster_folder in sorted(os.listdir(organized_faces_folder)): | |
| if cluster_folder.startswith("person_"): | |
| person_folder = os.path.join(organized_faces_folder, cluster_folder) | |
| face_files = sorted([f for f in os.listdir(person_folder) if f.endswith('.jpg')]) | |
| if face_files: | |
| cluster_id = int(cluster_folder.split('_')[1]) | |
| if cluster_id == largest_cluster: | |
| for i, sample in enumerate(face_files): | |
| face_path = os.path.join(person_folder, sample) | |
| output_path = os.path.join(output_folder, f"face_sample_most_frequent_{i:04d}.jpg") | |
| face_img = cv2.imread(face_path) | |
| if face_img is not None: | |
| small_face = cv2.resize(face_img, (160, 160)) | |
| cv2.imwrite(output_path, small_face) | |
| face_samples["most_frequent"].append(output_path) | |
| else: | |
| for i, sample in enumerate(face_files): | |
| face_path = os.path.join(person_folder, sample) | |
| output_path = os.path.join(output_folder, f"face_sample_other_{cluster_id:02d}_{i:04d}.jpg") | |
| face_img = cv2.imread(face_path) | |
| if face_img is not None: | |
| small_face = cv2.resize(face_img, (160, 160)) | |
| cv2.imwrite(output_path, small_face) | |
| face_samples["others"].append(output_path) | |
| return face_samples | |
| def process_video(video_path, desired_fps, batch_size, progress=gr.Progress()): | |
| output_folder = "output" | |
| os.makedirs(output_folder, exist_ok=True) | |
| # Initialize plot variables | |
| mse_plot_all = None | |
| mse_plot_comp = None | |
| mse_plot_raw = None | |
| emotion_plots = [None] * 6 # For the 6 emotions | |
| face_samples = {"most_frequent": [], "others": []} | |
| with tempfile.TemporaryDirectory() as temp_dir: | |
| aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces') | |
| organized_faces_folder = os.path.join(temp_dir, 'organized_faces') | |
| os.makedirs(aligned_faces_folder, exist_ok=True) | |
| os.makedirs(organized_faces_folder, exist_ok=True) | |
| clip = VideoFileClip(video_path) | |
| video_duration = clip.duration | |
| clip.close() | |
| progress(0, "Starting frame extraction") | |
| frames_folder = os.path.join(temp_dir, 'extracted_frames') | |
| def extraction_progress(percent, message): | |
| progress(percent / 100, f"Extracting frames") | |
| frame_count, original_fps = extract_frames(video_path, frames_folder, desired_fps, extraction_progress) | |
| progress(1, "Frame extraction complete") | |
| progress(0.3, "Processing frames") | |
| embeddings_by_frame, emotions_by_frame, aligned_face_paths = process_frames(frames_folder, aligned_faces_folder, | |
| frame_count, | |
| progress, batch_size) | |
| if not aligned_face_paths: | |
| return ("No faces were extracted from the video.", | |
| None, None, None, None, None, None, None, None, None, [], []) | |
| progress(0.6, "Clustering faces") | |
| embeddings = [embedding for _, embedding in embeddings_by_frame.items()] | |
| clusters = cluster_faces(embeddings) | |
| num_clusters = len(set(clusters)) # Get the number of unique clusters | |
| progress(0.7, "Organizing faces") | |
| organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder) | |
| progress(0.8, "Saving person data") | |
| df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, | |
| original_fps, temp_dir, video_duration) | |
| progress(0.85, "Getting face samples") | |
| face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster) | |
| progress(0.9, "Performing anomaly detection") | |
| feature_columns = [col for col in df.columns if | |
| col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']] | |
| raw_embedding_columns = [col for col in df.columns if col.startswith('Raw_Embedding_')] | |
| X = df[feature_columns].values | |
| try: | |
| mse_all, mse_comp, mse_raw = lstm_anomaly_detection( | |
| X, feature_columns, raw_embedding_columns, batch_size=batch_size) | |
| progress(0.95, "Generating plots") | |
| mse_plot_all = plot_mse(df, mse_all, "Facial Features + Emotions", color='blue', hide_first_n=5) | |
| mse_plot_comp = plot_mse(df, mse_comp, "Facial Features", color='deepskyblue', hide_first_n=5) | |
| mse_plot_raw = plot_mse(df, mse_raw, "Facial Embeddings", color='steelblue', hide_first_n=5) | |
| emotion_plots = [ | |
| plot_mse(df, embedding_anomaly_detection(df[emotion].values.reshape(-1, 1)), | |
| f"MSE: {emotion.capitalize()}", color=color, hide_first_n=5) | |
| for emotion, color in zip(['fear', 'sad', 'angry', 'happy', 'surprise', 'neutral'], | |
| ['purple', 'green', 'orange', 'darkblue', 'gold', 'grey']) | |
| ] | |
| except Exception as e: | |
| print(f"Error details: {str(e)}") | |
| return (f"Error in anomaly detection: {str(e)}", | |
| None, None, None, None, None, None, None, None, None, [], []) | |
| progress(1.0, "Preparing results") | |
| results = f"Number of persons/clusters detected: {num_clusters}\n\n" | |
| results += f"Breakdown of persons/clusters:\n" | |
| for cluster_id in range(num_clusters): | |
| results += f"Person/Cluster {cluster_id + 1}: {len([c for c in clusters if c == cluster_id])} frames\n" | |
| return ( | |
| results, | |
| mse_plot_all, | |
| mse_plot_comp, | |
| mse_plot_raw, | |
| *emotion_plots, | |
| face_samples["most_frequent"], | |
| face_samples["others"] | |
| ) | |
| # Define gallery outputs | |
| gallery_outputs = [ | |
| gr.Gallery(label="Most Frequent Person Random Samples", columns=5, rows=2, height="auto"), | |
| gr.Gallery(label="Other Persons Random Samples", columns=5, rows=1, height="auto") | |
| ] | |
| # Update the Gradio interface | |
| iface = gr.Interface( | |
| fn=process_video, | |
| inputs=[ | |
| gr.Video(), | |
| gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Desired FPS"), | |
| gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size") | |
| ], | |
| outputs=[ | |
| gr.Textbox(label="Anomaly Detection Results"), | |
| gr.Plot(label="MSE: Facial Features + Emotions"), | |
| gr.Plot(label="MSE: Facial Features"), | |
| gr.Plot(label="MSE: Facial Embeddings"), | |
| gr.Plot(label="MSE: Fear"), | |
| gr.Plot(label="MSE: Sad"), | |
| gr.Plot(label="MSE: Angry"), | |
| gr.Plot(label="MSE: Happy"), | |
| gr.Plot(label="MSE: Surprise"), | |
| gr.Plot(label="MSE: Neutral"), | |
| ] + gallery_outputs, | |
| title="Facial Expressions Anomaly Detection", | |
| description=""" | |
| This application detects anomalies in facial expressions and emotions from a video input. | |
| It identifies distinct persons in the video and provides sample faces for each, with multiple samples for the most frequent person. | |
| The graphs show Mean Squared Error (MSE) values for different aspects of facial expressions and emotions over time. | |
| Each point represents a frame, with red points indicating detected anomalies. | |
| Anomalies are annotated with their corresponding timecodes. | |
| Higher MSE values indicate more unusual or anomalous expressions or emotions at that point in the video. | |
| Adjust the parameters as needed: | |
| - Desired FPS: Frames per second to analyze (lower for faster processing) | |
| - Batch Size: Affects processing speed and GPU memory usage | |
| """, | |
| allow_flagging="never" | |
| ) | |
| # Launch the interface | |
| iface.launch() |