Spaces:
Runtime error
Runtime error
import moviepy.editor as mp | |
from pyannote.audio import Pipeline | |
import torch | |
import torchaudio | |
from pyannote.core import Segment | |
def extract_audio_from_video(video_path): | |
video = mp.VideoFileClip(video_path) | |
audio_path = video_path.rsplit('.', 1)[0] + '.wav' | |
video.audio.write_audiofile(audio_path) | |
return audio_path | |
def diarize_speakers(audio_path): | |
pipeline = Pipeline.from_pretrained("pyannote/[email protected]", use_auth_token="YOUR_HF_TOKEN") | |
diarization = pipeline(audio_path) | |
return diarization | |
def get_speaker_embeddings(audio_path, diarization, model): | |
waveform, sample_rate = torchaudio.load(audio_path) | |
embeddings = [] | |
for turn, _, speaker in diarization.itertracks(yield_label=True): | |
start = int(turn.start * sample_rate) | |
end = int(turn.end * sample_rate) | |
segment = waveform[:, start:end] | |
if segment.shape[1] == 0: | |
continue | |
with torch.no_grad(): | |
embedding = model({"waveform": segment, "sample_rate": sample_rate}) | |
embeddings.append({"time": turn.start, "embedding": embedding.squeeze().cpu().numpy(), "speaker": speaker}) | |
return embeddings | |
def align_voice_embeddings(voice_embeddings, frame_count, fps): | |
aligned_embeddings = [] | |
current_embedding_index = 0 | |
for frame in range(frame_count): | |
frame_time = frame / fps | |
while (current_embedding_index < len(voice_embeddings) - 1 and | |
voice_embeddings[current_embedding_index + 1]["time"] <= frame_time): | |
current_embedding_index += 1 | |
aligned_embeddings.append(voice_embeddings[current_embedding_index]["embedding"]) | |
return np.array(aligned_embeddings) |