reab5555's picture
Update visualization.py
4d670fa verified
raw
history blame
10.8 kB
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg
import matplotlib.colors as mcolors
import seaborn as sns
import numpy as np
import pandas as pd
import cv2
from matplotlib.patches import Rectangle
from utils import seconds_to_timecode
from anomaly_detection import determine_anomalies
def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4):
plt.figure(figsize=(16, 8), dpi=300)
fig, ax = plt.subplots(figsize=(16, 8))
if 'Seconds' not in df.columns:
df['Seconds'] = df['Timecode'].apply(
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
# Ensure df and mse_values have the same length and remove NaN values
min_length = min(len(df), len(mse_values))
df = df.iloc[:min_length].copy()
mse_values = mse_values[:min_length]
# Remove NaN values and create a mask for valid data
valid_mask = ~np.isnan(mse_values)
df = df[valid_mask]
mse_values = mse_values[valid_mask]
# Function to identify continuous segments
def get_continuous_segments(seconds, values, max_gap=1):
segments = []
current_segment = []
for i, (sec, val) in enumerate(zip(seconds, values)):
if not current_segment or (sec - current_segment[-1][0] <= max_gap):
current_segment.append((sec, val))
else:
segments.append(current_segment)
current_segment = [(sec, val)]
if current_segment:
segments.append(current_segment)
return segments
# Get continuous segments
segments = get_continuous_segments(df['Seconds'], mse_values)
# Plot each segment separately
for segment in segments:
segment_seconds, segment_mse = zip(*segment)
ax.scatter(segment_seconds, segment_mse, color=color, alpha=0.3, s=5)
# Calculate and plot rolling mean and std for this segment
if len(segment) > 1: # Only if there's more than one point in the segment
segment_df = pd.DataFrame({'Seconds': segment_seconds, 'MSE': segment_mse})
segment_df = segment_df.sort_values('Seconds')
mean = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).mean()
std = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).std()
ax.plot(segment_df['Seconds'], mean, color=color, linewidth=0.5)
ax.fill_between(segment_df['Seconds'], mean - std, mean + std, color=color, alpha=0.1)
# Rest of the function remains the same
median = np.median(mse_values)
ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline')
threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values)
ax.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold: {anomaly_threshold:.1f}')
ax.text(ax.get_xlim()[1], threshold, f'Threshold: {anomaly_threshold:.1f}', verticalalignment='center', horizontalalignment='left', color='red')
anomalies = determine_anomalies(mse_values, anomaly_threshold)
anomaly_frames = df['Frame'].iloc[anomalies].tolist()
ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=20, zorder=5)
anomaly_data = list(zip(df['Timecode'].iloc[anomalies],
df['Seconds'].iloc[anomalies],
mse_values[anomalies]))
anomaly_data.sort(key=lambda x: x[1])
grouped_anomalies = []
current_group = []
for timecode, sec, mse in anomaly_data:
if not current_group or sec - current_group[-1][1] <= time_threshold:
current_group.append((timecode, sec, mse))
else:
grouped_anomalies.append(current_group)
current_group = [(timecode, sec, mse)]
if current_group:
grouped_anomalies.append(current_group)
for group in grouped_anomalies:
start_sec = group[0][1]
end_sec = group[-1][1]
rect = Rectangle((start_sec, ax.get_ylim()[0]), end_sec - start_sec, ax.get_ylim()[1] - ax.get_ylim()[0],
facecolor='red', alpha=0.2, zorder=1)
ax.add_patch(rect)
for group in grouped_anomalies:
highest_mse_anomaly = max(group, key=lambda x: x[2])
timecode, sec, mse = highest_mse_anomaly
ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10),
ha='center', fontsize=6, color='red')
max_seconds = df['Seconds'].max()
num_ticks = 100
tick_locations = np.linspace(0, max_seconds, num_ticks)
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
ax.set_xlabel('Timecode')
ax.set_ylabel('Mean Squared Error')
ax.set_title(title)
ax.grid(True, linestyle='--', alpha=0.7)
ax.legend()
plt.tight_layout()
plt.close()
return fig, anomaly_frames
def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'):
plt.figure(figsize=(16, 3), dpi=300)
fig, ax = plt.subplots(figsize=(16, 3))
ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7)
ax.set_xlabel('Mean Squared Error')
ax.set_ylabel('Number of Samples')
ax.set_title(title)
mean = np.mean(mse_values)
std = np.std(mse_values)
threshold = mean + anomaly_threshold * std
ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2)
plt.tight_layout()
plt.close()
return fig
def plot_mse_heatmap(mse_values, title, df):
plt.figure(figsize=(20, 3), dpi=300)
fig, ax = plt.subplots(figsize=(20, 3))
# Reshape MSE values to 2D array for heatmap
mse_2d = mse_values.reshape(1, -1)
# Create heatmap
sns.heatmap(mse_2d, cmap='YlOrRd', cbar=False, ax=ax)
# Set x-axis ticks to timecodes
num_ticks = 60
tick_locations = np.linspace(0, len(mse_values) - 1, num_ticks).astype(int)
tick_labels = [df['Timecode'].iloc[i] for i in tick_locations]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels, rotation=90, ha='center', va='top')
ax.set_title(title)
# Remove y-axis labels
ax.set_yticks([])
plt.tight_layout()
plt.close()
return fig
def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
plt.figure(figsize=(16, 8), dpi=300)
fig, ax = plt.subplots(figsize=(16, 8))
df['Seconds'] = df['Timecode'].apply(
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
posture_data = [(frame, score) for frame, score in posture_scores.items() if score is not None]
posture_frames, posture_scores = zip(*posture_data)
# Create a new dataframe for posture data
posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores})
posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner')
ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5)
mean = posture_df['Score'].rolling(window=10).mean()
ax.plot(posture_df['Seconds'], mean, color=color, linewidth=0.5)
ax.set_xlabel('Timecode')
ax.set_ylabel('Posture Score')
ax.set_title("Body Posture Over Time")
ax.grid(True, linestyle='--', alpha=0.7)
max_seconds = df['Seconds'].max()
num_ticks = 80
tick_locations = np.linspace(0, max_seconds, num_ticks)
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
plt.tight_layout()
plt.close()
return fig
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, output_path, desired_fps, largest_cluster):
# Filter the DataFrame to only include frames from the largest cluster
df_largest_cluster = df[df['Cluster'] == largest_cluster]
mse_embeddings = mse_embeddings[df['Cluster'] == largest_cluster]
mse_posture = mse_posture[df['Cluster'] == largest_cluster]
cap = cv2.VideoCapture(video_path)
original_fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, original_fps, (width, height + 200))
cmap = mcolors.LinearSegmentedColormap.from_list("custom",
[(1, 1, 1), (1, 0, 0)], N=256) # More reddish for higher MSE values
mse_embeddings = np.interp(np.linspace(0, len(mse_embeddings) - 1, total_frames),
np.arange(len(mse_embeddings)), mse_embeddings)
mse_posture = np.interp(np.linspace(0, len(mse_posture) - 1, total_frames),
np.arange(len(mse_posture)), mse_posture)
mse_embeddings_norm = (mse_embeddings - np.min(mse_embeddings)) / (np.max(mse_embeddings) - np.min(mse_embeddings))
mse_posture_norm = (mse_posture - np.min(mse_posture)) / (np.max(mse_posture) - np.min(mse_posture))
combined_mse = np.zeros((2, total_frames, 3))
combined_mse[0] = np.array([1, 1 - mse_embeddings_norm, 1 - mse_embeddings_norm]).T # More reddish for facial
combined_mse[1] = np.array([1, 1 - mse_posture_norm, 1 - mse_posture_norm]).T # More reddish for posture
fig, ax = plt.subplots(figsize=(width/100, 2))
im = ax.imshow(combined_mse, aspect='auto', extent=[0, total_frames, 0, 2])
ax.set_yticks([0.5, 1.5])
ax.set_yticklabels(['Face', 'Posture'])
ax.set_xticks([])
plt.tight_layout()
line = None
for frame_count in range(total_frames):
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_count)
ret, frame = cap.read()
if not ret:
break
if line:
line.remove()
line = ax.axvline(x=frame_count, color='r', linewidth=2)
canvas = FigureCanvasAgg(fig)
canvas.draw()
heatmap_img = np.frombuffer(canvas.tostring_rgb(), dtype='uint8')
heatmap_img = heatmap_img.reshape(canvas.get_width_height()[::-1] + (3,))
heatmap_img = cv2.resize(heatmap_img, (width, 200))
combined_frame = np.vstack((frame, heatmap_img))
seconds = frame_count / original_fps
timecode = f"{int(seconds//3600):02d}:{int((seconds%3600)//60):02d}:{int(seconds%60):02d}"
cv2.putText(combined_frame, f"Time: {timecode}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
out.write(combined_frame)
cap.release()
out.release()
plt.close(fig)
return output_path