Update visualization.py
Browse files- visualization.py +5 -8
visualization.py
CHANGED
@@ -217,10 +217,10 @@ def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, outpu
|
|
217 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
218 |
|
219 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
220 |
-
out = cv2.VideoWriter(output_path, fourcc,
|
221 |
|
222 |
cmap = mcolors.LinearSegmentedColormap.from_list("custom",
|
223 |
-
[(1, 1, 1), (
|
224 |
|
225 |
mse_embeddings = np.interp(np.linspace(0, len(mse_embeddings) - 1, total_frames),
|
226 |
np.arange(len(mse_embeddings)), mse_embeddings)
|
@@ -231,8 +231,8 @@ def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, outpu
|
|
231 |
mse_posture_norm = (mse_posture - np.min(mse_posture)) / (np.max(mse_posture) - np.min(mse_posture))
|
232 |
|
233 |
combined_mse = np.zeros((2, total_frames, 3))
|
234 |
-
combined_mse[0] = np.array([1 - mse_embeddings_norm, 1 - mse_embeddings_norm
|
235 |
-
combined_mse[1] = np.array([1 - mse_posture_norm,
|
236 |
|
237 |
fig, ax = plt.subplots(figsize=(width/100, 2))
|
238 |
im = ax.imshow(combined_mse, aspect='auto', extent=[0, total_frames, 0, 2])
|
@@ -242,9 +242,7 @@ def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, outpu
|
|
242 |
plt.tight_layout()
|
243 |
|
244 |
line = None
|
245 |
-
|
246 |
-
|
247 |
-
for frame_count in range(0, total_frames, frame_interval):
|
248 |
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_count)
|
249 |
ret, frame = cap.read()
|
250 |
if not ret:
|
@@ -273,4 +271,3 @@ def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, outpu
|
|
273 |
plt.close(fig)
|
274 |
|
275 |
return output_path
|
276 |
-
|
|
|
217 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
218 |
|
219 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
220 |
+
out = cv2.VideoWriter(output_path, fourcc, original_fps, (width, height + 200))
|
221 |
|
222 |
cmap = mcolors.LinearSegmentedColormap.from_list("custom",
|
223 |
+
[(1, 1, 1), (1, 0, 0)], N=256) # More reddish for higher MSE values
|
224 |
|
225 |
mse_embeddings = np.interp(np.linspace(0, len(mse_embeddings) - 1, total_frames),
|
226 |
np.arange(len(mse_embeddings)), mse_embeddings)
|
|
|
231 |
mse_posture_norm = (mse_posture - np.min(mse_posture)) / (np.max(mse_posture) - np.min(mse_posture))
|
232 |
|
233 |
combined_mse = np.zeros((2, total_frames, 3))
|
234 |
+
combined_mse[0] = np.array([1, 1 - mse_embeddings_norm, 1 - mse_embeddings_norm]).T # More reddish for facial
|
235 |
+
combined_mse[1] = np.array([1, 1 - mse_posture_norm, 1 - mse_posture_norm]).T # More reddish for posture
|
236 |
|
237 |
fig, ax = plt.subplots(figsize=(width/100, 2))
|
238 |
im = ax.imshow(combined_mse, aspect='auto', extent=[0, total_frames, 0, 2])
|
|
|
242 |
plt.tight_layout()
|
243 |
|
244 |
line = None
|
245 |
+
for frame_count in range(total_frames):
|
|
|
|
|
246 |
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_count)
|
247 |
ret, frame = cap.read()
|
248 |
if not ret:
|
|
|
271 |
plt.close(fig)
|
272 |
|
273 |
return output_path
|
|