|
import os |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
from facenet_pytorch import InceptionResnetV1, MTCNN |
|
import mediapipe as mp |
|
from fer import FER |
|
from sklearn.cluster import KMeans |
|
from sklearn.preprocessing import StandardScaler, MinMaxScaler |
|
from sklearn.metrics import silhouette_score |
|
from scipy.spatial.distance import cdist |
|
import umap |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
from matplotlib.ticker import MaxNLocator |
|
import gradio as gr |
|
import tempfile |
|
import shutil |
|
import subprocess |
|
import fractions |
|
|
|
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' |
|
import tensorflow as tf |
|
tf.get_logger().setLevel('ERROR') |
|
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.999, 0.999, 0.999], min_face_size=100, selection_method='largest') |
|
model = InceptionResnetV1(pretrained='vggface2').eval().to(device) |
|
mp_face_mesh = mp.solutions.face_mesh |
|
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5) |
|
emotion_detector = FER(mtcnn=False) |
|
|
|
def frame_to_timecode(frame_num, original_fps, desired_fps): |
|
total_seconds = frame_num / original_fps |
|
hours = int(total_seconds // 3600) |
|
minutes = int((total_seconds % 3600) // 60) |
|
seconds = int(total_seconds % 60) |
|
milliseconds = int((total_seconds - int(total_seconds)) * 1000) |
|
return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}" |
|
|
|
def get_face_embedding_and_emotion(face_img): |
|
face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255 |
|
face_tensor = (face_tensor - 0.5) / 0.5 |
|
face_tensor = face_tensor.to(device) |
|
with torch.no_grad(): |
|
embedding = model(face_tensor) |
|
|
|
emotions = emotion_detector.detect_emotions(face_img) |
|
if emotions: |
|
emotion_dict = emotions[0]['emotions'] |
|
else: |
|
emotion_dict = {e: 0 for e in ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']} |
|
|
|
return embedding.cpu().numpy().flatten(), emotion_dict |
|
|
|
def alignFace(img): |
|
img_raw = img.copy() |
|
results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) |
|
if not results.multi_face_landmarks: |
|
return None |
|
landmarks = results.multi_face_landmarks[0].landmark |
|
left_eye = np.array([[landmarks[33].x, landmarks[33].y], [landmarks[160].x, landmarks[160].y], |
|
[landmarks[158].x, landmarks[158].y], [landmarks[144].x, landmarks[144].y], |
|
[landmarks[153].x, landmarks[153].y], [landmarks[145].x, landmarks[145].y]]) |
|
right_eye = np.array([[landmarks[362].x, landmarks[362].y], [landmarks[385].x, landmarks[385].y], |
|
[landmarks[387].x, landmarks[387].y], [landmarks[263].x, landmarks[263].y], |
|
[landmarks[373].x, landmarks[373].y], [landmarks[380].x, landmarks[380].y]]) |
|
left_eye_center = left_eye.mean(axis=0).astype(np.int32) |
|
right_eye_center = right_eye.mean(axis=0).astype(np.int32) |
|
dY = right_eye_center[1] - left_eye_center[1] |
|
dX = right_eye_center[0] - left_eye_center[0] |
|
angle = np.degrees(np.arctan2(dY, dX)) |
|
desired_angle = 0 |
|
angle_diff = desired_angle - angle |
|
height, width = img_raw.shape[:2] |
|
center = (width // 2, height // 2) |
|
rotation_matrix = cv2.getRotationMatrix2D(center, angle_diff, 1) |
|
new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height)) |
|
return new_img |
|
|
|
def extract_frames(video_path, output_folder, fps): |
|
os.makedirs(output_folder, exist_ok=True) |
|
command = [ |
|
'ffmpeg', |
|
'-i', video_path, |
|
'-vf', f'fps={fps}', |
|
f'{output_folder}/frame_%04d.jpg' |
|
] |
|
try: |
|
result = subprocess.run(command, check=True, capture_output=True, text=True) |
|
print(f"FFmpeg stdout: {result.stdout}") |
|
print(f"FFmpeg stderr: {result.stderr}") |
|
except subprocess.CalledProcessError as e: |
|
print(f"Error extracting frames: {e}") |
|
print(f"FFmpeg stdout: {e.stdout}") |
|
print(f"FFmpeg stderr: {e.stderr}") |
|
raise |
|
|
|
def get_video_info(video_path): |
|
ffprobe_command = [ |
|
'ffprobe', |
|
'-v', 'error', |
|
'-select_streams', 'v:0', |
|
'-count_packets', |
|
'-show_entries', 'stream=nb_read_packets,r_frame_rate', |
|
'-of', 'csv=p=0', |
|
video_path |
|
] |
|
ffprobe_output = subprocess.check_output(ffprobe_command, universal_newlines=True).strip().split(',') |
|
frame_rate, frame_count = ffprobe_output |
|
|
|
frac = fractions.Fraction(frame_rate) |
|
original_fps = float(frac.numerator) / float(frac.denominator) |
|
frame_count = int(frame_count) |
|
|
|
return frame_count, original_fps |
|
|
|
def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size): |
|
embeddings_by_frame = {} |
|
emotions_by_frame = {} |
|
frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')]) |
|
|
|
for i in range(0, len(frame_files), batch_size): |
|
batch_files = frame_files[i:i+batch_size] |
|
batch_frames = [] |
|
batch_nums = [] |
|
|
|
for frame_file in batch_files: |
|
frame_num = int(frame_file.split('_')[1].split('.')[0]) |
|
frame_path = os.path.join(frames_folder, frame_file) |
|
frame = cv2.imread(frame_path) |
|
if frame is not None: |
|
batch_frames.append(frame) |
|
batch_nums.append(frame_num) |
|
|
|
if batch_frames: |
|
|
|
batch_boxes, batch_probs = mtcnn.detect(batch_frames) |
|
|
|
for j, (frame, frame_num, boxes, probs) in enumerate(zip(batch_frames, batch_nums, batch_boxes, batch_probs)): |
|
if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99: |
|
x1, y1, x2, y2 = [int(b) for b in boxes[0]] |
|
face = frame[y1:y2, x1:x2] |
|
if face.size > 0: |
|
aligned_face = alignFace(face) |
|
if aligned_face is not None: |
|
aligned_face_resized = cv2.resize(aligned_face, (160, 160)) |
|
output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg") |
|
cv2.imwrite(output_path, aligned_face_resized) |
|
embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized) |
|
embeddings_by_frame[frame_num] = embedding |
|
emotions_by_frame[frame_num] = emotion |
|
|
|
progress((i + len(batch_files)) / frame_count, f"Processing frames {i + 1} to {min(i + len(batch_files), frame_count)} of {frame_count}") |
|
|
|
return embeddings_by_frame, emotions_by_frame |
|
|
|
def cluster_embeddings(embeddings): |
|
if len(embeddings) < 2: |
|
print("Not enough embeddings for clustering. Assigning all to one cluster.") |
|
return np.zeros(len(embeddings), dtype=int) |
|
n_clusters = min(3, len(embeddings)) |
|
scaler = StandardScaler() |
|
embeddings_scaled = scaler.fit_transform(embeddings) |
|
kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10) |
|
clusters = kmeans.fit_predict(embeddings_scaled) |
|
return clusters |
|
|
|
def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder): |
|
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters): |
|
person_folder = os.path.join(organized_faces_folder, f"person_{cluster}") |
|
os.makedirs(person_folder, exist_ok=True) |
|
src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg") |
|
dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg") |
|
shutil.copy(src, dst) |
|
|
|
def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder, num_components): |
|
emotions = ['angry', 'disgust', 'fear', 'happy', 'sad', 'neutral'] |
|
person_data = {} |
|
|
|
for (frame_num, embedding), (_, emotion_dict), cluster in zip(embeddings_by_frame.items(), |
|
emotions_by_frame.items(), clusters): |
|
if cluster not in person_data: |
|
person_data[cluster] = [] |
|
person_data[cluster].append((frame_num, embedding, {e: emotion_dict[e] for e in emotions})) |
|
|
|
largest_cluster = max(person_data, key=lambda k: len(person_data[k])) |
|
|
|
data = person_data[largest_cluster] |
|
data.sort(key=lambda x: x[0]) |
|
frames, embeddings, emotions_data = zip(*data) |
|
|
|
embeddings_array = np.array(embeddings) |
|
np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array) |
|
|
|
reducer = umap.UMAP(n_components=num_components, random_state=1) |
|
embeddings_reduced = reducer.fit_transform(embeddings) |
|
|
|
scaler = MinMaxScaler(feature_range=(0, 1)) |
|
embeddings_reduced_normalized = scaler.fit_transform(embeddings_reduced) |
|
|
|
timecodes = [frame_to_timecode(frame, original_fps, desired_fps) for frame in frames] |
|
times_in_minutes = [frame / (original_fps * 60) for frame in frames] |
|
|
|
df_data = { |
|
'Frame': frames, |
|
'Timecode': timecodes, |
|
'Time (Minutes)': times_in_minutes, |
|
'Embedding_Index': range(len(embeddings)) |
|
} |
|
|
|
for i in range(num_components): |
|
df_data[f'Comp {i + 1}'] = embeddings_reduced_normalized[:, i] |
|
|
|
for emotion in emotions: |
|
df_data[emotion] = [e[emotion] for e in emotions_data] |
|
|
|
df = pd.DataFrame(df_data) |
|
|
|
return df, largest_cluster |
|
|
|
class LSTMAutoencoder(nn.Module): |
|
def __init__(self, input_size, hidden_size=64, num_layers=2): |
|
super(LSTMAutoencoder, self).__init__() |
|
self.input_size = input_size |
|
self.hidden_size = hidden_size |
|
self.num_layers = num_layers |
|
|
|
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) |
|
self.fc = nn.Linear(hidden_size, input_size) |
|
|
|
def forward(self, x): |
|
outputs, (hidden, _) = self.lstm(x) |
|
out = self.fc(outputs) |
|
return out |
|
|
|
def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, batch_size=64): |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
X = torch.FloatTensor(X).to(device) |
|
|
|
|
|
if X.dim() == 2: |
|
X = X.unsqueeze(0) |
|
elif X.dim() == 1: |
|
X = X.unsqueeze(0).unsqueeze(2) |
|
elif X.dim() > 3: |
|
raise ValueError(f"Input X should be 1D, 2D or 3D, but got {X.dim()} dimensions") |
|
|
|
print(f"X shape after reshaping: {X.shape}") |
|
|
|
train_size = int(0.85 * X.shape[1]) |
|
X_train, X_val = X[:, :train_size, :], X[:, train_size:, :] |
|
|
|
model = LSTMAutoencoder(input_size=X.shape[2]).to(device) |
|
criterion = nn.MSELoss() |
|
optimizer = optim.Adam(model.parameters()) |
|
|
|
for epoch in range(epochs): |
|
model.train() |
|
optimizer.zero_grad() |
|
output_train = model(X_train) |
|
loss_train = criterion(output_train, X_train.squeeze(0)) |
|
loss_train.backward() |
|
optimizer.step() |
|
|
|
model.eval() |
|
with torch.no_grad(): |
|
output_val = model(X_val) |
|
loss_val = criterion(output_val, X_val.squeeze(0)) |
|
|
|
model.eval() |
|
with torch.no_grad(): |
|
reconstructed = model(X).squeeze(0).cpu().numpy() |
|
|
|
|
|
mse_all = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1) |
|
top_indices_all = mse_all.argsort()[-num_anomalies:][::-1] |
|
anomalies_all = np.zeros(len(mse_all), dtype=bool) |
|
anomalies_all[top_indices_all] = True |
|
|
|
|
|
component_columns = [col for col in feature_columns if col.startswith('Comp')] |
|
component_indices = [feature_columns.index(col) for col in component_columns] |
|
|
|
if len(component_indices) > 0: |
|
mse_comp = np.mean(np.power(X.squeeze(0).cpu().numpy()[:, component_indices] - reconstructed[:, component_indices], 2), axis=1) |
|
else: |
|
mse_comp = mse_all |
|
|
|
top_indices_comp = mse_comp.argsort()[-num_anomalies:][::-1] |
|
anomalies_comp = np.zeros(len(mse_comp), dtype=bool) |
|
anomalies_comp[top_indices_comp] = True |
|
|
|
return (anomalies_all, mse_all, top_indices_all, |
|
anomalies_comp, mse_comp, top_indices_comp, |
|
model) |
|
|
|
def plot_anomaly_scores(df, anomaly_scores, top_indices, title): |
|
fig, ax = plt.subplots(figsize=(16, 8)) |
|
bars = ax.bar(range(len(df)), anomaly_scores, width=0.8, color='skyblue') |
|
for i in top_indices: |
|
bars[i].set_color('red') |
|
ax.set_xlabel('Timecode') |
|
ax.set_ylabel('Anomaly Score') |
|
ax.set_title(f'Anomaly Scores Over Time ({title})') |
|
ax.xaxis.set_major_locator(MaxNLocator(nbins=100)) |
|
ticks = ax.get_xticks() |
|
ax.set_xticklabels([df['Timecode'].iloc[int(tick)] if tick >= 0 and tick < len(df) else '' for tick in ticks], rotation=90, ha='right') |
|
plt.tight_layout() |
|
return fig |
|
|
|
def plot_emotion(df, emotion, num_anomalies, color): |
|
fig, ax = plt.subplots(figsize=(16, 8)) |
|
values = df[emotion].values |
|
bars = ax.bar(range(len(df)), values, width=0.8, color=color) |
|
top_indices = np.argsort(values)[-num_anomalies:][::-1] |
|
for i in top_indices: |
|
bars[i].set_color('red') |
|
ax.set_xlabel('Timecode') |
|
ax.set_ylabel(f'{emotion.capitalize()} Score') |
|
ax.set_title(f'{emotion.capitalize()} Anomalies Over Time (Top {num_anomalies} in Red)') |
|
ax.xaxis.set_major_locator(MaxNLocator(nbins=100)) |
|
ticks = ax.get_xticks() |
|
ax.set_xticklabels([df['Timecode'].iloc[int(tick)] if tick >= 0 and tick < len(df) else '' for tick in ticks], rotation=90, ha='right') |
|
plt.tight_layout() |
|
return fig |
|
|
|
import base64 |
|
|
|
def get_random_face_sample(organized_faces_folder, largest_cluster, output_folder): |
|
person_folder = os.path.join(organized_faces_folder, f"person_{largest_cluster}") |
|
face_files = [f for f in os.listdir(person_folder) if f.endswith('.jpg')] |
|
if face_files: |
|
random_face = np.random.choice(face_files) |
|
face_path = os.path.join(person_folder, random_face) |
|
output_path = os.path.join(output_folder, "random_face_sample.jpg") |
|
|
|
|
|
face_img = cv2.imread(face_path) |
|
small_face = cv2.resize(face_img, (80, 80)) |
|
cv2.imwrite(output_path, small_face) |
|
|
|
return output_path |
|
return None |
|
|
|
def process_video(video_path, num_anomalies, num_components, desired_fps, batch_size, progress=gr.Progress()): |
|
output_folder = "output" |
|
os.makedirs(output_folder, exist_ok=True) |
|
|
|
with tempfile.TemporaryDirectory() as temp_dir: |
|
aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces') |
|
organized_faces_folder = os.path.join(temp_dir, 'organized_faces') |
|
os.makedirs(aligned_faces_folder, exist_ok=True) |
|
os.makedirs(organized_faces_folder, exist_ok=True) |
|
|
|
progress(0.1, "Extracting frames") |
|
frames_folder = os.path.join(temp_dir, 'extracted_frames') |
|
extract_frames(video_path, frames_folder, desired_fps) |
|
|
|
progress(0.2, "Getting video info") |
|
frame_count, original_fps = get_video_info(video_path) |
|
|
|
progress(0.3, "Processing frames") |
|
embeddings_by_frame, emotions_by_frame = process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size) |
|
|
|
if not embeddings_by_frame: |
|
return "No faces were extracted from the video.", None, None, None, None, None, None |
|
|
|
progress(0.6, "Clustering embeddings") |
|
embeddings = list(embeddings_by_frame.values()) |
|
clusters = cluster_embeddings(embeddings) |
|
|
|
progress(0.7, "Organizing faces") |
|
organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder) |
|
|
|
progress(0.8, "Saving person data") |
|
df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, temp_dir, num_components) |
|
|
|
progress(0.9, "Performing anomaly detection") |
|
feature_columns = [col for col in df.columns if col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']] |
|
X = df[feature_columns].values |
|
print(f"Shape of input data: {X.shape}") |
|
print(f"Feature columns: {feature_columns}") |
|
try: |
|
anomalies_all, anomaly_scores_all, top_indices_all, anomalies_comp, anomaly_scores_comp, top_indices_comp, _ = lstm_anomaly_detection(X, feature_columns, num_anomalies=num_anomalies, batch_size=batch_size) |
|
except Exception as e: |
|
print(f"Error details: {str(e)}") |
|
print(f"X shape: {X.shape}") |
|
print(f"X dtype: {X.dtype}") |
|
return f"Error in anomaly detection: {str(e)}", None, None, None, None, None, None |
|
|
|
progress(0.95, "Generating plots") |
|
try: |
|
anomaly_plot_all = plot_anomaly_scores(df, anomaly_scores_all, top_indices_all, "All Features") |
|
anomaly_plot_comp = plot_anomaly_scores(df, anomaly_scores_comp, top_indices_comp, "Components Only") |
|
emotion_plots = [ |
|
plot_emotion(df, 'fear', num_anomalies, 'purple'), |
|
plot_emotion(df, 'sad', num_anomalies, 'green'), |
|
plot_emotion(df, 'angry', num_anomalies, 'orange') |
|
] |
|
except Exception as e: |
|
return f"Error generating plots: {str(e)}", None, None, None, None, None, None |
|
|
|
|
|
face_sample = get_random_face_sample(organized_faces_folder, largest_cluster, output_folder) |
|
|
|
progress(1.0, "Preparing results") |
|
results = f"Top {num_anomalies} anomalies (All Features):\n" |
|
results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in |
|
zip(anomaly_scores_all[top_indices_all], df['Timecode'].iloc[top_indices_all].values)]) |
|
results += f"\n\nTop {num_anomalies} anomalies (Components Only):\n" |
|
results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in |
|
zip(anomaly_scores_comp[top_indices_comp], df['Timecode'].iloc[top_indices_comp].values)]) |
|
|
|
for emotion in ['fear', 'sad', 'angry']: |
|
top_indices = np.argsort(df[emotion].values)[-num_anomalies:][::-1] |
|
results += f"\n\nTop {num_anomalies} {emotion.capitalize()} Scores:\n" |
|
results += "\n".join([f"{df[emotion].iloc[i]:.4f} at {df['Timecode'].iloc[i]}" for i in top_indices]) |
|
|
|
return results, face_sample, anomaly_plot_all, anomaly_plot_comp, *emotion_plots |
|
|
|
|
|
iface = gr.Interface( |
|
fn=process_video, |
|
inputs=[ |
|
gr.Video(), |
|
gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Number of Anomalies"), |
|
gr.Slider(minimum=2, maximum=5, step=1, value=3, label="Number of Components"), |
|
gr.Slider(minimum=1, maximum=30, step=1, value=20, label="Desired FPS"), |
|
gr.Slider(minimum=1, maximum=64, step=1, value=16, label="Batch Size") |
|
], |
|
outputs=[ |
|
gr.Textbox(label="Anomaly Detection Results"), |
|
gr.Image(type="filepath", label="Random Face Sample of Most Frequent Person"), |
|
gr.Plot(label="Anomaly Scores (All Features)"), |
|
gr.Plot(label="Anomaly Scores (Components Only)"), |
|
gr.Plot(label="Fear Anomalies"), |
|
gr.Plot(label="Sad Anomalies"), |
|
gr.Plot(label="Angry Anomalies") |
|
], |
|
title="Facial Expressions Anomaly Detection", |
|
description=""" |
|
This application detects anomalies in facial expressions and emotions from a video input. |
|
It focuses on the most frequently appearing person in the video for analysis. |
|
|
|
Adjust the parameters as needed: |
|
- Number of Anomalies: How many top anomalies or high intensities to highlight |
|
- Number of Components: Complexity of the facial expression model |
|
- Desired FPS: Frames per second to analyze (lower for faster processing) |
|
- Batch Size: Affects processing speed and memory usage |
|
""" |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |