|
import matplotlib.pyplot as plt |
|
from mpl_toolkits.mplot3d import Axes3D |
|
from matplotlib.backends.backend_agg import FigureCanvasAgg |
|
import matplotlib.colors as mcolors |
|
from matplotlib.colors import LinearSegmentedColormap |
|
import seaborn as sns |
|
import numpy as np |
|
import pandas as pd |
|
import cv2 |
|
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeVideoClip, ImageClip, VideoClip, concatenate_videoclips |
|
from moviepy.video.fx.all import resize |
|
from PIL import Image, ImageDraw, ImageFont |
|
from matplotlib.patches import Rectangle |
|
from utils import seconds_to_timecode |
|
from anomaly_detection import determine_anomalies |
|
from scipy import interpolate |
|
import gradio as gr |
|
import os |
|
|
|
def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4): |
|
plt.figure(figsize=(16, 8), dpi=300) |
|
fig, ax = plt.subplots(figsize=(16, 8)) |
|
|
|
if 'Seconds' not in df.columns: |
|
df['Seconds'] = df['Timecode'].apply( |
|
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':'))))) |
|
|
|
|
|
min_length = min(len(df), len(mse_values)) |
|
df = df.iloc[:min_length].copy() |
|
mse_values = mse_values[:min_length] |
|
|
|
|
|
valid_mask = ~np.isnan(mse_values) |
|
df = df[valid_mask] |
|
mse_values = mse_values[valid_mask] |
|
|
|
|
|
def get_continuous_segments(seconds, values, max_gap=1): |
|
segments = [] |
|
current_segment = [] |
|
for i, (sec, val) in enumerate(zip(seconds, values)): |
|
if not current_segment or (sec - current_segment[-1][0] <= max_gap): |
|
current_segment.append((sec, val)) |
|
else: |
|
segments.append(current_segment) |
|
current_segment = [(sec, val)] |
|
if current_segment: |
|
segments.append(current_segment) |
|
return segments |
|
|
|
|
|
segments = get_continuous_segments(df['Seconds'], mse_values) |
|
|
|
|
|
for segment in segments: |
|
segment_seconds, segment_mse = zip(*segment) |
|
ax.scatter(segment_seconds, segment_mse, color=color, alpha=0.3, s=5) |
|
|
|
|
|
if len(segment) > 1: |
|
segment_df = pd.DataFrame({'Seconds': segment_seconds, 'MSE': segment_mse}) |
|
segment_df = segment_df.sort_values('Seconds') |
|
mean = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).mean() |
|
std = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).std() |
|
|
|
ax.plot(segment_df['Seconds'], mean, color=color, linewidth=0.5) |
|
ax.fill_between(segment_df['Seconds'], mean - std, mean + std, color=color, alpha=0.1) |
|
|
|
|
|
median = np.median(mse_values) |
|
ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline') |
|
|
|
threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values) |
|
ax.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold: {anomaly_threshold:.1f}') |
|
ax.text(ax.get_xlim()[1], threshold, f'Threshold: {anomaly_threshold:.1f}', verticalalignment='center', horizontalalignment='left', color='red') |
|
|
|
anomalies = determine_anomalies(mse_values, anomaly_threshold) |
|
anomaly_frames = df['Frame'].iloc[anomalies].tolist() |
|
|
|
ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=20, zorder=5) |
|
|
|
anomaly_data = list(zip(df['Timecode'].iloc[anomalies], |
|
df['Seconds'].iloc[anomalies], |
|
mse_values[anomalies])) |
|
anomaly_data.sort(key=lambda x: x[1]) |
|
|
|
grouped_anomalies = [] |
|
current_group = [] |
|
for timecode, sec, mse in anomaly_data: |
|
if not current_group or sec - current_group[-1][1] <= time_threshold: |
|
current_group.append((timecode, sec, mse)) |
|
else: |
|
grouped_anomalies.append(current_group) |
|
current_group = [(timecode, sec, mse)] |
|
if current_group: |
|
grouped_anomalies.append(current_group) |
|
|
|
for group in grouped_anomalies: |
|
start_sec = group[0][1] |
|
end_sec = group[-1][1] |
|
rect = Rectangle((start_sec, ax.get_ylim()[0]), end_sec - start_sec, ax.get_ylim()[1] - ax.get_ylim()[0], |
|
facecolor='red', alpha=0.2, zorder=1) |
|
ax.add_patch(rect) |
|
|
|
for group in grouped_anomalies: |
|
highest_mse_anomaly = max(group, key=lambda x: x[2]) |
|
timecode, sec, mse = highest_mse_anomaly |
|
ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10), |
|
ha='center', fontsize=6, color='red') |
|
|
|
max_seconds = df['Seconds'].max() |
|
num_ticks = 100 |
|
tick_locations = np.linspace(0, max_seconds, num_ticks) |
|
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations] |
|
|
|
ax.set_xticks(tick_locations) |
|
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6) |
|
|
|
ax.set_xlabel('Timecode') |
|
ax.set_ylabel('Mean Squared Error') |
|
ax.set_title(title) |
|
|
|
ax.grid(True, linestyle='--', alpha=0.7) |
|
ax.legend() |
|
plt.tight_layout() |
|
plt.close() |
|
return fig, anomaly_frames |
|
|
|
def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'): |
|
plt.figure(figsize=(16, 3), dpi=300) |
|
fig, ax = plt.subplots(figsize=(16, 3)) |
|
|
|
ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7) |
|
ax.set_xlabel('Mean Squared Error') |
|
ax.set_ylabel('N') |
|
ax.set_title(title) |
|
|
|
mean = np.mean(mse_values) |
|
std = np.std(mse_values) |
|
threshold = mean + anomaly_threshold * std |
|
|
|
ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2) |
|
|
|
plt.tight_layout() |
|
plt.close() |
|
return fig |
|
|
|
|
|
def plot_mse_heatmap(mse_values, title, df): |
|
plt.figure(figsize=(20, 3), dpi=300) |
|
fig, ax = plt.subplots(figsize=(20, 3)) |
|
|
|
|
|
mse_2d = mse_values.reshape(1, -1) |
|
|
|
|
|
sns.heatmap(mse_2d, cmap='YlOrRd', cbar=False, ax=ax) |
|
|
|
|
|
num_ticks = min(60, len(mse_values)) |
|
tick_locations = np.linspace(0, len(mse_values) - 1, num_ticks).astype(int) |
|
|
|
|
|
tick_locations = tick_locations[tick_locations < len(df)] |
|
|
|
tick_labels = [df['Timecode'].iloc[i] if i < len(df) else '' for i in tick_locations] |
|
|
|
ax.set_xticks(tick_locations) |
|
ax.set_xticklabels(tick_labels, rotation=90, ha='center', va='top') |
|
|
|
ax.set_title(title) |
|
|
|
|
|
ax.set_yticks([]) |
|
|
|
plt.tight_layout() |
|
plt.close() |
|
return fig |
|
|
|
def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3): |
|
plt.figure(figsize=(16, 8), dpi=300) |
|
fig, ax = plt.subplots(figsize=(16, 8)) |
|
|
|
df['Seconds'] = df['Timecode'].apply( |
|
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':'))))) |
|
|
|
posture_data = [(frame, score) for frame, score in posture_scores.items() if score is not None] |
|
posture_frames, posture_scores = zip(*posture_data) |
|
|
|
|
|
posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores}) |
|
|
|
|
|
posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner') |
|
|
|
ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5) |
|
mean = posture_df['Score'].rolling(window=10).mean() |
|
ax.plot(posture_df['Seconds'], mean, color=color, linewidth=0.5) |
|
|
|
ax.set_xlabel('Timecode') |
|
ax.set_ylabel('Posture Score') |
|
ax.set_title("Body Posture Over Time") |
|
|
|
ax.grid(True, linestyle='--', alpha=0.7) |
|
|
|
max_seconds = df['Seconds'].max() |
|
num_ticks = 80 |
|
tick_locations = np.linspace(0, max_seconds, num_ticks) |
|
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations] |
|
|
|
ax.set_xticks(tick_locations) |
|
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6) |
|
|
|
plt.tight_layout() |
|
plt.close() |
|
return fig |
|
|
|
|
|
def create_heatmap(frame_time, mse_embeddings, mse_posture, mse_voice): |
|
fig, ax = plt.subplots(figsize=(10, 1)) |
|
time_index = int(frame_time) |
|
|
|
if time_index < len(mse_embeddings) and time_index < len(mse_posture) and time_index < len(mse_voice): |
|
mse_values = [mse_embeddings[time_index], mse_posture[time_index], mse_voice[time_index]] |
|
else: |
|
mse_values = [0, 0, 0] |
|
|
|
ax.barh(['Face', 'Posture', 'Voice'], mse_values, color=['navy', 'purple', 'green']) |
|
ax.set_xlim(0, 1) |
|
|
|
canvas = FigureCanvas(fig) |
|
canvas.draw() |
|
img = np.frombuffer(canvas.tostring_rgb(), dtype='uint8') |
|
img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,)) |
|
plt.close(fig) |
|
return img |
|
|
|
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, fps, largest_cluster): |
|
original_clip = VideoFileClip(video_path) |
|
duration = original_clip.duration |
|
heatmap_clips = [] |
|
|
|
for t in np.arange(0, duration, 1.0 / fps): |
|
heatmap_img = create_heatmap(t, mse_embeddings, mse_posture, mse_voice) |
|
heatmap_img_bgr = cv2.cvtColor(heatmap_img, cv2.COLOR_RGB2BGR) |
|
heatmap_filename = os.path.join(output_folder, f"heatmap_{int(t * fps)}.png") |
|
cv2.imwrite(heatmap_filename, heatmap_img_bgr) |
|
heatmap_clips.append(ImageClip(heatmap_filename).set_duration(1.0 / fps).set_start(t).resize(height=100)) |
|
|
|
heatmap_clip = concatenate_videoclips(heatmap_clips, method="compose") |
|
final_clip = CompositeVideoClip([original_clip, heatmap_clip.set_position(('center', 'bottom'))]) |
|
heatmap_video_path = os.path.join(output_folder, "heatmap_video.mp4") |
|
final_clip.write_videofile(heatmap_video_path, codec='libx264', fps=fps, audio_codec='aac') |
|
|
|
return heatmap_video_path |
|
|
|
|
|
|
|
def plot_correlation_heatmap(mse_embeddings, mse_posture, mse_voice): |
|
data = np.vstack((mse_embeddings, mse_posture, mse_voice)).T |
|
df = pd.DataFrame(data, columns=["Facial Features", "Body Posture", "Voice"]) |
|
corr = df.corr() |
|
|
|
plt.figure(figsize=(10, 8), dpi=300) |
|
|
|
heatmap = sns.heatmap(corr, annot=True, cmap='coolwarm', vmin=-1, vmax=1) |
|
plt.title('Correlation Heatmap of MSEs') |
|
plt.tight_layout() |
|
return plt.gcf() |
|
|
|
def plot_3d_scatter(mse_embeddings, mse_posture, mse_voice): |
|
fig = plt.figure() |
|
plt.figure(figsize=(16, 8), dpi=300) |
|
ax = fig.add_subplot(111, projection='3d') |
|
|
|
|
|
ax.scatter(mse_posture, mse_embeddings, mse_voice, c=['purple']*len(mse_posture), label='Body Posture', alpha=0.6) |
|
ax.scatter(mse_posture, mse_embeddings, mse_voice, c=['navy']*len(mse_embeddings), label='Facial Features', alpha=0.6) |
|
ax.scatter(mse_posture, mse_embeddings, mse_voice, c=['green']*len(mse_voice), label='Voice', alpha=0.6) |
|
|
|
ax.set_xlabel('Body Posture MSE') |
|
ax.set_ylabel('Facial Features MSE') |
|
ax.set_zlabel('Voice MSE') |
|
|
|
ax.legend() |
|
plt.close(fig) |
|
return fig |