File size: 11,360 Bytes
11e16fe
859cec7
7e7733b
88ae781
caf2618
11e16fe
 
 
2ab7633
2128c11
2e27102
ab7a94a
11e16fe
 
 
71c6d95
b6d52dc
0b7634e
11e16fe
 
bd57c84
11e16fe
 
 
 
 
 
 
 
79bd6b6
11e16fe
 
79bd6b6
 
 
 
11e16fe
79bd6b6
 
 
 
 
 
 
 
 
 
 
 
 
11e16fe
79bd6b6
 
11e16fe
79bd6b6
11e16fe
79bd6b6
 
 
 
 
 
 
 
 
 
 
 
11e16fe
79bd6b6
11e16fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd57c84
11e16fe
 
 
 
5ede52b
11e16fe
 
 
 
 
 
 
 
 
 
 
 
caf2618
11e16fe
bd57c84
11e16fe
 
 
 
 
 
 
 
 
5fefb86
11e16fe
5fefb86
 
 
 
 
11e16fe
 
 
 
 
 
 
 
 
 
 
 
 
 
bd57c84
11e16fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abc304c
4d4ae71
2e27102
2128c11
3ad6751
2128c11
392b31b
2128c11
 
78cd4ce
2128c11
 
 
 
 
3ad6751
2128c11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
859cec7
 
 
 
99614c2
 
 
859cec7
3ad6751
 
99614c2
 
 
859cec7
 
 
3ad6751
 
859cec7
 
3ad6751
 
 
 
 
859cec7
 
 
 
3ad6751
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.backends.backend_agg import FigureCanvasAgg
import matplotlib.colors as mcolors
from matplotlib.colors import LinearSegmentedColormap
import seaborn as sns
import numpy as np
import pandas as pd
import cv2
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeVideoClip, ImageClip, VideoClip, concatenate_videoclips
from moviepy.video.fx.all import resize
from PIL import Image, ImageDraw, ImageFont
from matplotlib.patches import Rectangle
from utils import seconds_to_timecode
from anomaly_detection import determine_anomalies
from scipy import interpolate
import gradio as gr
import os

def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4):
    plt.figure(figsize=(16, 8), dpi=300)
    fig, ax = plt.subplots(figsize=(16, 8))

    if 'Seconds' not in df.columns:
        df['Seconds'] = df['Timecode'].apply(
            lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))

    # Ensure df and mse_values have the same length and remove NaN values
    min_length = min(len(df), len(mse_values))
    df = df.iloc[:min_length].copy()
    mse_values = mse_values[:min_length]

    # Remove NaN values and create a mask for valid data
    valid_mask = ~np.isnan(mse_values)
    df = df[valid_mask]
    mse_values = mse_values[valid_mask]

    # Function to identify continuous segments
    def get_continuous_segments(seconds, values, max_gap=1):
        segments = []
        current_segment = []
        for i, (sec, val) in enumerate(zip(seconds, values)):
            if not current_segment or (sec - current_segment[-1][0] <= max_gap):
                current_segment.append((sec, val))
            else:
                segments.append(current_segment)
                current_segment = [(sec, val)]
        if current_segment:
            segments.append(current_segment)
        return segments

    # Get continuous segments
    segments = get_continuous_segments(df['Seconds'], mse_values)

    # Plot each segment separately
    for segment in segments:
        segment_seconds, segment_mse = zip(*segment)
        ax.scatter(segment_seconds, segment_mse, color=color, alpha=0.3, s=5)
        
        # Calculate and plot rolling mean and std for this segment
        if len(segment) > 1:  # Only if there's more than one point in the segment
            segment_df = pd.DataFrame({'Seconds': segment_seconds, 'MSE': segment_mse})
            segment_df = segment_df.sort_values('Seconds')
            mean = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).mean()
            std = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).std()
            
            ax.plot(segment_df['Seconds'], mean, color=color, linewidth=0.5)
            ax.fill_between(segment_df['Seconds'], mean - std, mean + std, color=color, alpha=0.1)

    # Rest of the function remains the same
    median = np.median(mse_values)
    ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline')

    threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values)
    ax.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold: {anomaly_threshold:.1f}')
    ax.text(ax.get_xlim()[1], threshold, f'Threshold: {anomaly_threshold:.1f}', verticalalignment='center', horizontalalignment='left', color='red')

    anomalies = determine_anomalies(mse_values, anomaly_threshold)
    anomaly_frames = df['Frame'].iloc[anomalies].tolist()

    ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=20, zorder=5)

    anomaly_data = list(zip(df['Timecode'].iloc[anomalies],
                            df['Seconds'].iloc[anomalies],
                            mse_values[anomalies]))
    anomaly_data.sort(key=lambda x: x[1])

    grouped_anomalies = []
    current_group = []
    for timecode, sec, mse in anomaly_data:
        if not current_group or sec - current_group[-1][1] <= time_threshold:
            current_group.append((timecode, sec, mse))
        else:
            grouped_anomalies.append(current_group)
            current_group = [(timecode, sec, mse)]
    if current_group:
        grouped_anomalies.append(current_group)

    for group in grouped_anomalies:
        start_sec = group[0][1]
        end_sec = group[-1][1]
        rect = Rectangle((start_sec, ax.get_ylim()[0]), end_sec - start_sec, ax.get_ylim()[1] - ax.get_ylim()[0],
                         facecolor='red', alpha=0.2, zorder=1)
        ax.add_patch(rect)

    for group in grouped_anomalies:
        highest_mse_anomaly = max(group, key=lambda x: x[2])
        timecode, sec, mse = highest_mse_anomaly
        ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10),
                    ha='center', fontsize=6, color='red')

    max_seconds = df['Seconds'].max()
    num_ticks = 100
    tick_locations = np.linspace(0, max_seconds, num_ticks)
    tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]

    ax.set_xticks(tick_locations)
    ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)

    ax.set_xlabel('Timecode')
    ax.set_ylabel('Mean Squared Error')
    ax.set_title(title)

    ax.grid(True, linestyle='--', alpha=0.7)
    ax.legend()
    plt.tight_layout()
    plt.close()
    return fig, anomaly_frames

def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'):
    plt.figure(figsize=(16, 3), dpi=300)
    fig, ax = plt.subplots(figsize=(16, 3))

    ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7)
    ax.set_xlabel('Mean Squared Error')
    ax.set_ylabel('N')
    ax.set_title(title)

    mean = np.mean(mse_values)
    std = np.std(mse_values)
    threshold = mean + anomaly_threshold * std

    ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2)

    plt.tight_layout()
    plt.close()
    return fig


def plot_mse_heatmap(mse_values, title, df):
    plt.figure(figsize=(20, 3), dpi=300)
    fig, ax = plt.subplots(figsize=(20, 3))

    # Reshape MSE values to 2D array for heatmap
    mse_2d = mse_values.reshape(1, -1)

    # Create heatmap
    sns.heatmap(mse_2d, cmap='YlOrRd', cbar=False, ax=ax)

    # Set x-axis ticks to timecodes
    num_ticks = min(60, len(mse_values))
    tick_locations = np.linspace(0, len(mse_values) - 1, num_ticks).astype(int)
    
    # Ensure tick_locations are within bounds
    tick_locations = tick_locations[tick_locations < len(df)]
    
    tick_labels = [df['Timecode'].iloc[i] if i < len(df) else '' for i in tick_locations]

    ax.set_xticks(tick_locations)
    ax.set_xticklabels(tick_labels, rotation=90, ha='center', va='top')

    ax.set_title(title)

    # Remove y-axis labels
    ax.set_yticks([])

    plt.tight_layout()
    plt.close()
    return fig

def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
    plt.figure(figsize=(16, 8), dpi=300)
    fig, ax = plt.subplots(figsize=(16, 8))

    df['Seconds'] = df['Timecode'].apply(
        lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))

    posture_data = [(frame, score) for frame, score in posture_scores.items() if score is not None]
    posture_frames, posture_scores = zip(*posture_data)

    # Create a new dataframe for posture data
    posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores})


    posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner')

    ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5)
    mean = posture_df['Score'].rolling(window=10).mean()
    ax.plot(posture_df['Seconds'], mean, color=color, linewidth=0.5)

    ax.set_xlabel('Timecode')
    ax.set_ylabel('Posture Score')
    ax.set_title("Body Posture Over Time")

    ax.grid(True, linestyle='--', alpha=0.7)

    max_seconds = df['Seconds'].max()
    num_ticks = 80
    tick_locations = np.linspace(0, max_seconds, num_ticks)
    tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]

    ax.set_xticks(tick_locations)
    ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)

    plt.tight_layout()
    plt.close()
    return fig


def create_heatmap(frame_time, mse_embeddings, mse_posture, mse_voice):
    fig, ax = plt.subplots(figsize=(10, 1))
    time_index = int(frame_time)
    
    if time_index < len(mse_embeddings) and time_index < len(mse_posture) and time_index < len(mse_voice):
        mse_values = [mse_embeddings[time_index], mse_posture[time_index], mse_voice[time_index]]
    else:
        mse_values = [0, 0, 0]  # Default values if the index is out of bounds

    ax.barh(['Face', 'Posture', 'Voice'], mse_values, color=['navy', 'purple', 'green'])
    ax.set_xlim(0, 1)  # Normalize the MSE values

    canvas = FigureCanvas(fig)
    canvas.draw()
    img = np.frombuffer(canvas.tostring_rgb(), dtype='uint8')
    img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,))
    plt.close(fig)
    return img

def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, fps, largest_cluster):
    original_clip = VideoFileClip(video_path)
    duration = original_clip.duration
    heatmap_clips = []

    for t in np.arange(0, duration, 1.0 / fps):
        heatmap_img = create_heatmap(t, mse_embeddings, mse_posture, mse_voice)
        heatmap_img_bgr = cv2.cvtColor(heatmap_img, cv2.COLOR_RGB2BGR)
        heatmap_filename = os.path.join(output_folder, f"heatmap_{int(t * fps)}.png")
        cv2.imwrite(heatmap_filename, heatmap_img_bgr)
        heatmap_clips.append(ImageClip(heatmap_filename).set_duration(1.0 / fps).set_start(t).resize(height=100))

    heatmap_clip = concatenate_videoclips(heatmap_clips, method="compose")
    final_clip = CompositeVideoClip([original_clip, heatmap_clip.set_position(('center', 'bottom'))])
    heatmap_video_path = os.path.join(output_folder, "heatmap_video.mp4")
    final_clip.write_videofile(heatmap_video_path, codec='libx264', fps=fps, audio_codec='aac')

    return heatmap_video_path


# Function to create the correlation heatmap
def plot_correlation_heatmap(mse_embeddings, mse_posture, mse_voice):
    data = np.vstack((mse_embeddings, mse_posture, mse_voice)).T
    df = pd.DataFrame(data, columns=["Facial Features", "Body Posture", "Voice"])
    corr = df.corr()

    plt.figure(figsize=(10, 8), dpi=300)

    heatmap = sns.heatmap(corr, annot=True, cmap='coolwarm', vmin=-1, vmax=1)
    plt.title('Correlation Heatmap of MSEs')
    plt.tight_layout()
    return plt.gcf()

def plot_3d_scatter(mse_embeddings, mse_posture, mse_voice):
    fig = plt.figure()
    plt.figure(figsize=(16, 8), dpi=300)
    ax = fig.add_subplot(111, projection='3d')

    # Scatter plot
    ax.scatter(mse_posture, mse_embeddings, mse_voice, c=['purple']*len(mse_posture), label='Body Posture', alpha=0.6)
    ax.scatter(mse_posture, mse_embeddings, mse_voice, c=['navy']*len(mse_embeddings), label='Facial Features', alpha=0.6)
    ax.scatter(mse_posture, mse_embeddings, mse_voice, c=['green']*len(mse_voice), label='Voice', alpha=0.6)

    ax.set_xlabel('Body Posture MSE')
    ax.set_ylabel('Facial Features MSE')
    ax.set_zlabel('Voice MSE')

    ax.legend()
    plt.close(fig)
    return fig