Spaces:
Runtime error
Runtime error
import math | |
import os | |
import cv2 | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
from facenet_pytorch import InceptionResnetV1, MTCNN | |
import tensorflow as tf | |
import mediapipe as mp | |
from fer import FER | |
from sklearn.cluster import DBSCAN | |
from sklearn.preprocessing import StandardScaler, MinMaxScaler | |
import pandas as pd | |
import matplotlib | |
import matplotlib.pyplot as plt | |
from matplotlib.patches import Rectangle | |
from moviepy.editor import VideoFileClip | |
from PIL import Image | |
import gradio as gr | |
import tempfile | |
import shutil | |
import copy | |
import time | |
matplotlib.rcParams['figure.dpi'] = 500 | |
matplotlib.rcParams['savefig.dpi'] = 500 | |
# Initialize models and other global variables | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.95, 0.95, 0.95], min_face_size=80) | |
model = InceptionResnetV1(pretrained='vggface2').eval().to(device) | |
mp_face_mesh = mp.solutions.face_mesh | |
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5) | |
emotion_detector = FER(mtcnn=False) | |
def frame_to_timecode(frame_num, total_frames, duration): | |
total_seconds = (frame_num / total_frames) * duration | |
hours = int(total_seconds // 3600) | |
minutes = int((total_seconds % 3600) // 60) | |
seconds = int(total_seconds % 60) | |
milliseconds = int((total_seconds - int(total_seconds)) * 1000) | |
return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}" | |
def seconds_to_timecode(seconds): | |
hours = int(seconds // 3600) | |
minutes = int((seconds % 3600) // 60) | |
seconds = int(seconds % 60) | |
return f"{hours:02d}:{minutes:02d}:{seconds:02d}" | |
def timecode_to_seconds(timecode): | |
h, m, s = map(int, timecode.split(':')) | |
return h * 3600 + m * 60 + s | |
def get_face_embedding_and_emotion(face_img): | |
face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255 | |
face_tensor = (face_tensor - 0.5) / 0.5 | |
face_tensor = face_tensor.to(device) | |
with torch.no_grad(): | |
embedding = model(face_tensor) | |
emotions = emotion_detector.detect_emotions(face_img) | |
if emotions: | |
emotion_dict = emotions[0]['emotions'] | |
else: | |
emotion_dict = {e: 0 for e in ['angry', 'disgust', 'fear', 'sad', 'happy']} | |
return embedding.cpu().numpy().flatten(), emotion_dict | |
def alignFace(img): | |
img_raw = img.copy() | |
results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
if not results.multi_face_landmarks: | |
return None | |
landmarks = results.multi_face_landmarks[0].landmark | |
left_eye = np.array([[landmarks[33].x, landmarks[33].y], [landmarks[160].x, landmarks[160].y], | |
[landmarks[158].x, landmarks[158].y], [landmarks[144].x, landmarks[144].y], | |
[landmarks[153].x, landmarks[153].y], [landmarks[145].x, landmarks[145].y]]) | |
right_eye = np.array([[landmarks[362].x, landmarks[362].y], [landmarks[385].x, landmarks[385].y], | |
[landmarks[387].x, landmarks[387].y], [landmarks[263].x, landmarks[263].y], | |
[landmarks[373].x, landmarks[373].y], [landmarks[380].x, landmarks[380].y]]) | |
left_eye_center = left_eye.mean(axis=0).astype(np.int32) | |
right_eye_center = right_eye.mean(axis=0).astype(np.int32) | |
dY = right_eye_center[1] - left_eye_center[1] | |
dX = right_eye_center[0] - left_eye_center[0] | |
angle = np.degrees(np.arctan2(dY, dX)) | |
desired_angle = 0 | |
angle_diff = desired_angle - angle | |
height, width = img_raw.shape[:2] | |
center = (width // 2, height // 2) | |
rotation_matrix = cv2.getRotationMatrix2D(center, angle_diff, 1) | |
new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height)) | |
return new_img | |
def extract_frames(video_path, output_folder, desired_fps, progress_callback=None): | |
os.makedirs(output_folder, exist_ok=True) | |
clip = VideoFileClip(video_path) | |
original_fps = clip.fps | |
duration = clip.duration | |
total_frames = int(duration * original_fps) | |
step = max(1, original_fps / desired_fps) | |
total_frames_to_extract = int(total_frames / step) | |
frame_count = 0 | |
for t in np.arange(0, duration, step / original_fps): | |
frame = clip.get_frame(t) | |
img = Image.fromarray(frame) | |
img.save(os.path.join(output_folder, f"frame_{frame_count:04d}.jpg")) | |
frame_count += 1 | |
if progress_callback: | |
progress = min(100, (frame_count / total_frames_to_extract) * 100) | |
progress_callback(progress, f"Extracting frame") | |
if frame_count >= total_frames_to_extract: | |
break | |
clip.close() | |
return frame_count, original_fps | |
def is_frontal_face(landmarks, threshold=40): | |
nose_tip = landmarks[4] | |
left_chin = landmarks[234] | |
right_chin = landmarks[454] | |
nose_to_left = [left_chin.x - nose_tip.x, left_chin.y - nose_tip.y] | |
nose_to_right = [right_chin.x - nose_tip.x, right_chin.y - nose_tip.y] | |
dot_product = nose_to_left[0] * nose_to_right[0] + nose_to_left[1] * nose_to_right[1] | |
magnitude_left = math.sqrt(nose_to_left[0] ** 2 + nose_to_left[1] ** 2) | |
magnitude_right = math.sqrt(nose_to_right[0] ** 2 + nose_to_right[1] ** 2) | |
cos_angle = dot_product / (magnitude_left * magnitude_right) | |
angle = math.acos(cos_angle) | |
angle_degrees = math.degrees(angle) | |
return abs(180 - angle_degrees) < threshold | |
def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size): | |
embeddings_by_frame = {} | |
emotions_by_frame = {} | |
aligned_face_paths = [] | |
frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')]) | |
for i in range(0, len(frame_files), batch_size): | |
batch_files = frame_files[i:i + batch_size] | |
batch_frames = [] | |
batch_nums = [] | |
for frame_file in batch_files: | |
frame_num = int(frame_file.split('_')[1].split('.')[0]) | |
frame_path = os.path.join(frames_folder, frame_file) | |
frame = cv2.imread(frame_path) | |
if frame is not None: | |
batch_frames.append(frame) | |
batch_nums.append(frame_num) | |
if batch_frames: | |
batch_boxes, batch_probs = mtcnn.detect(batch_frames) | |
for j, (frame, frame_num, boxes, probs) in enumerate( | |
zip(batch_frames, batch_nums, batch_boxes, batch_probs)): | |
if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99: | |
x1, y1, x2, y2 = [int(b) for b in boxes[0]] | |
face = frame[y1:y2, x1:x2] | |
if face.size > 0: | |
results = face_mesh.process(cv2.cvtColor(face, cv2.COLOR_BGR2RGB)) | |
if results.multi_face_landmarks and is_frontal_face(results.multi_face_landmarks[0].landmark): | |
aligned_face = alignFace(face) | |
if aligned_face is not None: | |
aligned_face_resized = cv2.resize(aligned_face, (160, 160)) | |
output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg") | |
cv2.imwrite(output_path, aligned_face_resized) | |
aligned_face_paths.append(output_path) | |
embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized) | |
embeddings_by_frame[frame_num] = embedding | |
emotions_by_frame[frame_num] = emotion | |
progress((i + len(batch_files)) / len(frame_files), | |
f"Processing frames {i + 1} to {min(i + len(batch_files), len(frame_files))} of {len(frame_files)}") | |
return embeddings_by_frame, emotions_by_frame, aligned_face_paths | |
def cluster_faces(embeddings): | |
if len(embeddings) < 2: | |
print("Not enough faces for clustering. Assigning all to one cluster.") | |
return np.zeros(len(embeddings), dtype=int) | |
X = np.stack(embeddings) | |
dbscan = DBSCAN(eps=0.5, min_samples=5, metric='cosine') | |
clusters = dbscan.fit_predict(X) | |
if np.all(clusters == -1): | |
print("DBSCAN assigned all to noise. Considering as one cluster.") | |
return np.zeros(len(embeddings), dtype=int) | |
return clusters | |
def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder): | |
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters): | |
person_folder = os.path.join(organized_faces_folder, f"person_{cluster}") | |
os.makedirs(person_folder, exist_ok=True) | |
src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg") | |
dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg") | |
shutil.copy(src, dst) | |
def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder, video_duration): | |
emotions = ['angry', 'disgust', 'fear', 'sad', 'happy'] | |
person_data = {} | |
for (frame_num, embedding), (_, emotion_dict), cluster in zip(embeddings_by_frame.items(), emotions_by_frame.items(), clusters): | |
if cluster not in person_data: | |
person_data[cluster] = [] | |
person_data[cluster].append((frame_num, embedding, {e: emotion_dict[e] for e in emotions})) | |
largest_cluster = max(person_data, key=lambda k: len(person_data[k])) | |
data = person_data[largest_cluster] | |
data.sort(key=lambda x: x[0]) | |
frames, embeddings, emotions_data = zip(*data) | |
embeddings_array = np.array(embeddings) | |
np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array) | |
total_frames = max(frames) | |
timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames] | |
df_data = { | |
'Frame': frames, | |
'Timecode': timecodes, | |
'Embedding_Index': range(len(embeddings)) | |
} | |
for i in range(len(embeddings[0])): | |
df_data[f'Raw_Embedding_{i}'] = [embedding[i] for embedding in embeddings] | |
for emotion in emotions: | |
df_data[emotion] = [e[emotion] for e in emotions_data] | |
df = pd.DataFrame(df_data) | |
return df, largest_cluster | |
class Autoencoder(nn.Module): | |
def __init__(self, input_size): | |
super(Autoencoder, self).__init__() | |
self.encoder = nn.Sequential( | |
nn.Linear(input_size, 512), | |
nn.ReLU(), | |
nn.Linear(512, 256), | |
nn.ReLU(), | |
nn.Linear(256, 128), | |
nn.ReLU(), | |
nn.Linear(128, 64) | |
) | |
self.decoder = nn.Sequential( | |
nn.Linear(64, 128), | |
nn.ReLU(), | |
nn.Linear(128, 256), | |
nn.ReLU(), | |
nn.Linear(256, 512), | |
nn.ReLU(), | |
nn.Linear(512, input_size) | |
) | |
def forward(self, x): | |
batch_size, seq_len, _ = x.size() | |
x = x.view(batch_size * seq_len, -1) | |
encoded = self.encoder(x) | |
decoded = self.decoder(encoded) | |
return decoded.view(batch_size, seq_len, -1) | |
def determine_anomalies(mse_values, threshold): | |
mean = np.mean(mse_values) | |
std = np.std(mse_values) | |
anomalies = mse_values > (mean + threshold * std) | |
return anomalies | |
def anomaly_detection(X_emotions, X_embeddings, epochs=200, batch_size=8, patience=3): | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# Normalize emotions | |
scaler_emotions = MinMaxScaler() | |
X_emotions_scaled = scaler_emotions.fit_transform(X_emotions) | |
# Process emotions | |
X_emotions_scaled = torch.FloatTensor(X_emotions_scaled).to(device) | |
if X_emotions_scaled.dim() == 2: | |
X_emotions_scaled = X_emotions_scaled.unsqueeze(0) | |
model_emotions = Autoencoder(input_size=X_emotions_scaled.shape[2]).to(device) | |
criterion = nn.MSELoss() | |
optimizer_emotions = optim.Adam(model_emotions.parameters()) | |
# Train emotions model | |
for epoch in range(epochs): | |
model_emotions.train() | |
optimizer_emotions.zero_grad() | |
output_emotions = model_emotions(X_emotions_scaled) | |
loss_emotions = criterion(output_emotions, X_emotions_scaled) | |
loss_emotions.backward() | |
optimizer_emotions.step() | |
# Process facial embeddings | |
X_embeddings = torch.FloatTensor(X_embeddings).to(device) | |
if X_embeddings.dim() == 2: | |
X_embeddings = X_embeddings.unsqueeze(0) | |
model_embeddings = Autoencoder(input_size=X_embeddings.shape[2]).to(device) | |
optimizer_embeddings = optim.Adam(model_embeddings.parameters()) | |
# Train embeddings model | |
for epoch in range(epochs): | |
model_embeddings.train() | |
optimizer_embeddings.zero_grad() | |
output_embeddings = model_embeddings(X_embeddings) | |
loss_embeddings = criterion(output_embeddings, X_embeddings) | |
loss_embeddings.backward() | |
optimizer_embeddings.step() | |
# Compute MSE for emotions and embeddings | |
model_emotions.eval() | |
model_embeddings.eval() | |
with torch.no_grad(): | |
reconstructed_emotions = model_emotions(X_emotions_scaled).cpu().numpy() | |
reconstructed_embeddings = model_embeddings(X_embeddings).cpu().numpy() | |
mse_emotions = np.mean(np.power(X_emotions_scaled.cpu().numpy() - reconstructed_emotions, 2), axis=2).squeeze() | |
mse_embeddings = np.mean(np.power(X_embeddings.cpu().numpy() - reconstructed_embeddings, 2), axis=2).squeeze() | |
return mse_emotions, mse_embeddings | |
def plot_mse(df, mse_values, title, color='blue', time_threshold=3, anomaly_threshold=4): | |
plt.figure(figsize=(16, 8), dpi=500) | |
fig, ax = plt.subplots(figsize=(16, 8)) | |
if 'Seconds' not in df.columns: | |
df['Seconds'] = df['Timecode'].apply( | |
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':'))))) | |
# Ensure df and mse_values have the same length and remove NaN values | |
min_length = min(len(df), len(mse_values)) | |
df = df.iloc[:min_length] | |
mse_values = mse_values[:min_length] | |
# Remove NaN values | |
mask = ~np.isnan(mse_values) | |
df = df[mask] | |
mse_values = mse_values[mask] | |
mean = pd.Series(mse_values).rolling(window=10).mean() | |
std = pd.Series(mse_values).rolling(window=10).std() | |
median = np.median(mse_values) | |
ax.scatter(df['Seconds'], mse_values, color=color, alpha=0.3, s=5) | |
ax.plot(df['Seconds'], mean, color=color, linewidth=2) | |
ax.fill_between(df['Seconds'], mean - std, mean + std, color=color, alpha=0.2) | |
# Add median line | |
ax.axhline(y=median, color='black', linestyle='--', label='Baseline') | |
ax.text(ax.get_xlim()[1], median, 'Baseline', verticalalignment='center', horizontalalignment='left', color='black') | |
# Add threshold line | |
threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values) | |
ax.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold: {anomaly_threshold:.1f}') | |
ax.text(ax.get_xlim()[1], threshold, f'Threshold: {anomaly_threshold:.1f}', verticalalignment='center', horizontalalignment='left', color='red') | |
anomalies = determine_anomalies(mse_values, anomaly_threshold) | |
anomaly_frames = df['Frame'].iloc[anomalies].tolist() | |
ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=25, zorder=5) | |
anomaly_data = list(zip(df['Timecode'].iloc[anomalies], | |
df['Seconds'].iloc[anomalies], | |
mse_values[anomalies])) | |
anomaly_data.sort(key=lambda x: x[1]) | |
grouped_anomalies = [] | |
current_group = [] | |
for timecode, sec, mse in anomaly_data: | |
if not current_group or sec - current_group[-1][1] <= time_threshold: | |
current_group.append((timecode, sec, mse)) | |
else: | |
grouped_anomalies.append(current_group) | |
current_group = [(timecode, sec, mse)] | |
if current_group: | |
grouped_anomalies.append(current_group) | |
for group in grouped_anomalies: | |
start_sec = group[0][1] | |
end_sec = group[-1][1] | |
rect = Rectangle((start_sec, ax.get_ylim()[0]), end_sec - start_sec, ax.get_ylim()[1] - ax.get_ylim()[0], | |
facecolor='red', alpha=0.3, zorder=1) | |
ax.add_patch(rect) | |
for group in grouped_anomalies: | |
highest_mse_anomaly = max(group, key=lambda x: x[2]) | |
timecode, sec, mse = highest_mse_anomaly | |
ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10), | |
ha='center', fontsize=6, color='red') | |
max_seconds = df['Seconds'].max() | |
num_ticks = 100 | |
tick_locations = np.linspace(0, max_seconds, num_ticks) | |
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations] | |
ax.set_xticks(tick_locations) | |
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6) | |
ax.set_xlabel('Timecode') | |
ax.set_ylabel('Mean Squared Error') | |
ax.set_title(title) | |
ax.grid(True, linestyle='--', alpha=0.7) | |
ax.legend() | |
plt.tight_layout() | |
plt.close() | |
return fig, anomaly_frames | |
def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'): | |
plt.figure(figsize=(16, 8), dpi=500) | |
fig, ax = plt.subplots(figsize=(16, 8)) | |
ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7) | |
ax.set_xlabel('Mean Squared Error') | |
ax.set_ylabel('Number of Samples') | |
ax.set_title(title) | |
mean = np.mean(mse_values) | |
std = np.std(mse_values) | |
threshold = mean + anomaly_threshold * std | |
ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2) | |
# Move annotation to the bottom and away from the line | |
ax.annotate(f'Threshold: {anomaly_threshold:.1f}', | |
xy=(threshold, ax.get_ylim()[0]), | |
xytext=(0, -20), | |
textcoords='offset points', | |
ha='center', va='top', | |
bbox=dict(boxstyle='round,pad=0.5', fc='white', ec='none', alpha=0.7), | |
color='red') | |
plt.tight_layout() | |
plt.close() | |
return fig | |
def plot_emotion(df, emotion, color, anomaly_threshold): | |
plt.figure(figsize=(16, 8), dpi=500) | |
fig, ax = plt.subplots(figsize=(16, 8)) | |
df['Seconds'] = df['Timecode'].apply( | |
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':'))))) | |
mean = df[emotion].rolling(window=10).mean() | |
std = df[emotion].rolling(window=10).std() | |
median = df[emotion].median() | |
ax.scatter(df['Seconds'], df[emotion], color=color, alpha=0.3, s=5) | |
ax.plot(df['Seconds'], mean, color=color, linewidth=2) | |
ax.fill_between(df['Seconds'], mean - std, mean + std, color=color, alpha=0.2) | |
# Add median line | |
ax.axhline(y=median, color='black', linestyle='--', label='Baseline') | |
ax.text(ax.get_xlim()[1], median, 'Baseline', verticalalignment='center', horizontalalignment='left', color='black') | |
# Convert anomaly threshold to probability | |
probability_threshold = (anomaly_threshold - 1) / 6 # Convert 1-7 scale to 0-1 probability | |
# Add threshold line and detect anomalies | |
ax.axhline(y=probability_threshold, color='red', linestyle='--', label=f'Threshold: {probability_threshold:.2f}') | |
ax.text(ax.get_xlim()[1], probability_threshold, f'Threshold: {probability_threshold:.2f}', | |
verticalalignment='center', horizontalalignment='left', color='red') | |
# Detect and highlight anomalies | |
anomalies = df[emotion] >= probability_threshold | |
ax.scatter(df['Seconds'][anomalies], df[emotion][anomalies], color='red', s=25, zorder=5) | |
max_seconds = df['Seconds'].max() | |
num_ticks = 100 | |
tick_locations = np.linspace(0, max_seconds, num_ticks) | |
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations] | |
ax.set_xticks(tick_locations) | |
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6) | |
ax.set_xlabel('Timecode') | |
ax.set_ylabel('Emotion Probability') | |
ax.set_title(f"{emotion.capitalize()} Over Time") | |
ax.grid(True, linestyle='--', alpha=0.7) | |
ax.legend() | |
plt.tight_layout() | |
plt.close() | |
return fig | |
def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster, max_samples=500): | |
face_samples = {"most_frequent": [], "others": []} | |
for cluster_folder in sorted(os.listdir(organized_faces_folder)): | |
if cluster_folder.startswith("person_"): | |
person_folder = os.path.join(organized_faces_folder, cluster_folder) | |
face_files = sorted([f for f in os.listdir(person_folder) if f.endswith('.jpg')]) | |
if face_files: | |
cluster_id = int(cluster_folder.split('_')[1]) | |
if cluster_id == largest_cluster: | |
for i, sample in enumerate(face_files[:max_samples]): | |
face_path = os.path.join(person_folder, sample) | |
output_path = os.path.join(output_folder, f"face_sample_most_frequent_{i:04d}.jpg") | |
face_img = cv2.imread(face_path) | |
if face_img is not None: | |
small_face = cv2.resize(face_img, (160, 160)) | |
cv2.imwrite(output_path, small_face) | |
face_samples["most_frequent"].append(output_path) | |
if len(face_samples["most_frequent"]) >= max_samples: | |
break | |
else: | |
remaining_samples = max_samples - len(face_samples["others"]) | |
if remaining_samples > 0: | |
for i, sample in enumerate(face_files[:remaining_samples]): | |
face_path = os.path.join(person_folder, sample) | |
output_path = os.path.join(output_folder, f"face_sample_other_{cluster_id:02d}_{i:04d}.jpg") | |
face_img = cv2.imread(face_path) | |
if face_img is not None: | |
small_face = cv2.resize(face_img, (160, 160)) | |
cv2.imwrite(output_path, small_face) | |
face_samples["others"].append(output_path) | |
if len(face_samples["others"]) >= max_samples: | |
break | |
return face_samples | |
def process_video(video_path, anomaly_threshold, desired_fps, progress=gr.Progress()): | |
start_time = time.time() | |
output_folder = "output" | |
os.makedirs(output_folder, exist_ok=True) | |
batch_size = 16 | |
with tempfile.TemporaryDirectory() as temp_dir: | |
aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces') | |
organized_faces_folder = os.path.join(temp_dir, 'organized_faces') | |
os.makedirs(aligned_faces_folder, exist_ok=True) | |
os.makedirs(organized_faces_folder, exist_ok=True) | |
clip = VideoFileClip(video_path) | |
video_duration = clip.duration | |
clip.close() | |
progress(0, "Starting frame extraction") | |
frames_folder = os.path.join(temp_dir, 'extracted_frames') | |
def extraction_progress(percent, message): | |
progress(percent / 100, f"Extracting frames") | |
frame_count, original_fps = extract_frames(video_path, frames_folder, desired_fps, extraction_progress) | |
progress(1, "Frame extraction complete") | |
progress(0.3, "Processing frames") | |
embeddings_by_frame, emotions_by_frame, aligned_face_paths = process_frames(frames_folder, aligned_faces_folder, | |
frame_count, | |
progress, batch_size) | |
if not aligned_face_paths: | |
return ("No faces were extracted from the video.",) + (None,) * 10 | |
progress(0.6, "Clustering faces") | |
embeddings = [embedding for _, embedding in embeddings_by_frame.items()] | |
clusters = cluster_faces(embeddings) | |
num_clusters = len(set(clusters)) | |
progress(0.7, "Organizing faces") | |
organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder) | |
progress(0.8, "Saving person data") | |
df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, | |
original_fps, temp_dir, video_duration) | |
# Add 'Seconds' column to df | |
df['Seconds'] = df['Timecode'].apply( | |
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':'))))) | |
progress(0.85, "Getting face samples") | |
face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster) | |
progress(0.9, "Performing anomaly detection") | |
emotion_columns = ['angry', 'disgust', 'fear', 'sad', 'happy'] | |
embedding_columns = [col for col in df.columns if col.startswith('Raw_Embedding_')] | |
X_emotions = df[emotion_columns].values | |
X_embeddings = df[embedding_columns].values | |
try: | |
mse_emotions, mse_embeddings = anomaly_detection(X_emotions, X_embeddings, batch_size=batch_size) | |
progress(0.95, "Generating plots") | |
mse_plot_embeddings, anomaly_frames_embeddings = plot_mse(df, mse_embeddings, "Facial Embeddings", | |
color='green', | |
anomaly_threshold=anomaly_threshold) | |
mse_histogram_embeddings = plot_mse_histogram(mse_embeddings, "MSE Distribution: Facial Embeddings", | |
anomaly_threshold, color='green') | |
# Add emotion plots | |
emotion_plots = [] | |
for emotion, color in zip(emotion_columns, ['purple', 'brown', 'green', 'orange', 'darkblue']): | |
emotion_plot = plot_emotion(df, emotion, color, anomaly_threshold) | |
emotion_plots.append(emotion_plot) | |
mse_var_emotions = np.var(mse_emotions) | |
mse_var_embeddings = np.var(mse_embeddings) | |
except Exception as e: | |
print(f"Error details: {str(e)}") | |
return (f"Error in anomaly detection: {str(e)}",) + (None,) * 15 | |
progress(1.0, "Preparing results") | |
results = f"Number of persons/clusters detected: {num_clusters}\n\n" | |
results += f"Breakdown of persons/clusters:\n" | |
for cluster_id in range(num_clusters): | |
results += f"Person/Cluster {cluster_id + 1}: {len([c for c in clusters if c == cluster_id])} frames\n" | |
end_time = time.time() | |
execution_time = end_time - start_time | |
# Load anomaly frames as images | |
anomaly_faces_embeddings = [ | |
cv2.imread(os.path.join(aligned_faces_folder, f"frame_{frame}_face.jpg")) | |
for frame in anomaly_frames_embeddings | |
if os.path.exists(os.path.join(aligned_faces_folder, f"frame_{frame}_face.jpg")) | |
] | |
anomaly_faces_embeddings = [cv2.cvtColor(face, cv2.COLOR_BGR2RGB) for face in anomaly_faces_embeddings if face is not None] | |
return ( | |
execution_time, | |
results, | |
df, | |
mse_embeddings, | |
mse_emotions, | |
mse_plot_embeddings, | |
mse_histogram_embeddings, | |
*emotion_plots, | |
face_samples["most_frequent"], | |
face_samples["others"], | |
anomaly_faces_embeddings, | |
aligned_faces_folder | |
) | |
with gr.Blocks() as iface: | |
gr.Markdown("# Facial Expressions Anomaly Detection") | |
with gr.Row(): | |
video_input = gr.Video() | |
anomaly_threshold = gr.Slider(minimum=1, maximum=7, step=0.1, value=4.5, label="Anomaly Detection Threshold") | |
fps_slider = gr.Slider(minimum=10, maximum=20, step=5, value=20, label="Frames Per Second") | |
process_btn = gr.Button("Process Video") | |
execution_time = gr.Number(label="Execution Time (seconds)") | |
results_text = gr.Textbox(label="Anomaly Detection Results") | |
anomaly_frames_embeddings = gr.Gallery(label="Anomaly Frames (Facial Embeddings)", columns=6, rows=2, height="auto") | |
mse_embeddings_plot = gr.Plot(label="MSE: Facial Embeddings") | |
mse_embeddings_hist = gr.Plot(label="MSE Distribution: Facial Embeddings") | |
# Add emotion plots | |
emotion_plots = [gr.Plot(label=f"{emotion.capitalize()} Over Time") for emotion in ['angry', 'disgust', 'fear', 'sad', 'happy']] | |
face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples (Target)", columns=6, rows=2, height="auto") | |
face_samples_others = gr.Gallery(label="Other Persons Samples", columns=6, rows=1, height="auto") | |
# Hidden components to store intermediate results | |
df_store = gr.State() | |
mse_emotions_store = gr.State() | |
mse_embeddings_store = gr.State() | |
aligned_faces_folder_store = gr.State() | |
process_btn.click( | |
process_video, | |
inputs=[video_input, anomaly_threshold, fps_slider], | |
outputs=[ | |
execution_time, results_text, df_store, mse_embeddings_store, mse_emotions_store, | |
mse_embeddings_plot, mse_embeddings_hist, | |
*emotion_plots, | |
face_samples_most_frequent, face_samples_others, anomaly_frames_embeddings, | |
aligned_faces_folder_store | |
] | |
) | |
if __name__ == "__main__": | |
iface.launch() |