reab5555's picture
Upload 8 files
5286b18 verified
raw
history blame
6.56 kB
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
from matplotlib.patches import Rectangle
from utils import seconds_to_timecode
from anomaly_detection import determine_anomalies
def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4):
plt.figure(figsize=(16, 8), dpi=400)
fig, ax = plt.subplots(figsize=(16, 8))
if 'Seconds' not in df.columns:
df['Seconds'] = df['Timecode'].apply(
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
# Ensure df and mse_values have the same length and remove NaN values
min_length = min(len(df), len(mse_values))
df = df.iloc[:min_length]
mse_values = mse_values[:min_length]
# Remove NaN values
mask = ~np.isnan(mse_values)
df = df[mask]
mse_values = mse_values[mask]
mean = pd.Series(mse_values).rolling(window=10).mean()
std = pd.Series(mse_values).rolling(window=10).std()
median = np.median(mse_values)
ax.scatter(df['Seconds'], mse_values, color=color, alpha=0.3, s=5)
ax.plot(df['Seconds'], mean, color=color, linewidth=0.5)
ax.fill_between(df['Seconds'], mean - std, mean + std, color=color, alpha=0.1)
# Add median line
ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline')
# Add threshold line
threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values)
ax.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold: {anomaly_threshold:.1f}')
ax.text(ax.get_xlim()[1], threshold, f'Threshold: {anomaly_threshold:.1f}', verticalalignment='center', horizontalalignment='left', color='red')
anomalies = determine_anomalies(mse_values, anomaly_threshold)
anomaly_frames = df['Frame'].iloc[anomalies].tolist()
ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=20, zorder=5)
anomaly_data = list(zip(df['Timecode'].iloc[anomalies],
df['Seconds'].iloc[anomalies],
mse_values[anomalies]))
anomaly_data.sort(key=lambda x: x[1])
grouped_anomalies = []
current_group = []
for timecode, sec, mse in anomaly_data:
if not current_group or sec - current_group[-1][1] <= time_threshold:
current_group.append((timecode, sec, mse))
else:
grouped_anomalies.append(current_group)
current_group = [(timecode, sec, mse)]
if current_group:
grouped_anomalies.append(current_group)
for group in grouped_anomalies:
start_sec = group[0][1]
end_sec = group[-1][1]
rect = Rectangle((start_sec, ax.get_ylim()[0]), end_sec - start_sec, ax.get_ylim()[1] - ax.get_ylim()[0],
facecolor='red', alpha=0.2, zorder=1)
ax.add_patch(rect)
for group in grouped_anomalies:
highest_mse_anomaly = max(group, key=lambda x: x[2])
timecode, sec, mse = highest_mse_anomaly
ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10),
ha='center', fontsize=6, color='red')
max_seconds = df['Seconds'].max()
num_ticks = 100
tick_locations = np.linspace(0, max_seconds, num_ticks)
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
ax.set_xlabel('Timecode')
ax.set_ylabel('Mean Squared Error')
ax.set_title(title)
ax.grid(True, linestyle='--', alpha=0.7)
ax.legend()
plt.tight_layout()
plt.close()
return fig, anomaly_frames
def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'):
plt.figure(figsize=(16, 3), dpi=400)
fig, ax = plt.subplots(figsize=(16, 3))
ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7)
ax.set_xlabel('Mean Squared Error')
ax.set_ylabel('Number of Samples')
ax.set_title(title)
mean = np.mean(mse_values)
std = np.std(mse_values)
threshold = mean + anomaly_threshold * std
ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2)
plt.tight_layout()
plt.close()
return fig
def plot_mse_heatmap(mse_values, title, df):
plt.figure(figsize=(20, 3), dpi=400)
fig, ax = plt.subplots(figsize=(20, 3))
# Reshape MSE values to 2D array for heatmap
mse_2d = mse_values.reshape(1, -1)
# Create heatmap
sns.heatmap(mse_2d, cmap='YlOrRd', cbar=False, ax=ax)
# Set x-axis ticks to timecodes
num_ticks = 60
tick_locations = np.linspace(0, len(mse_values) - 1, num_ticks).astype(int)
tick_labels = [df['Timecode'].iloc[i] for i in tick_locations]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels, rotation=90, ha='center', va='top')
ax.set_title(title)
# Remove y-axis labels
ax.set_yticks([])
plt.tight_layout()
plt.close()
return fig
def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
plt.figure(figsize=(16, 8), dpi=400)
fig, ax = plt.subplots(figsize=(16, 8))
df['Seconds'] = df['Timecode'].apply(
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
posture_data = [(frame, score) for frame, score in posture_scores.items() if score is not None]
posture_frames, posture_scores = zip(*posture_data)
# Create a new dataframe for posture data
posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores})
posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner')
ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5)
mean = posture_df['Score'].rolling(window=10).mean()
ax.plot(posture_df['Seconds'], mean, color=color, linewidth=0.5)
ax.set_xlabel('Timecode')
ax.set_ylabel('Posture Score')
ax.set_title("Body Posture Over Time")
ax.grid(True, linestyle='--', alpha=0.7)
max_seconds = df['Seconds'].max()
num_ticks = 80
tick_locations = np.linspace(0, max_seconds, num_ticks)
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
plt.tight_layout()
plt.close()
return fig