|
import os |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, WhisperFeatureExtractor |
|
from moviepy.editor import VideoFileClip, AudioFileClip |
|
import nltk |
|
nltk.download('punkt', quiet=True) |
|
from nltk.tokenize import sent_tokenize |
|
|
|
@spaces.GPU(duration=300) |
|
|
|
def transcribe(video_file, transcribe_to_text=True, transcribe_to_srt=True, target_language='en'): |
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
|
|
model_id = "openai/whisper-large-v3" |
|
model = AutoModelForSpeechSeq2Seq.from_pretrained( |
|
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True |
|
) |
|
model.to(device) |
|
|
|
processor = AutoProcessor.from_pretrained(model_id) |
|
feature_extractor = WhisperFeatureExtractor.from_pretrained(model_id) |
|
|
|
video = VideoFileClip(video_file) |
|
audio = video.audio |
|
duration = audio.duration |
|
chunk_duration = 60 |
|
n_chunks = int(np.ceil(duration / chunk_duration)) |
|
|
|
full_transcription = "" |
|
for i in range(n_chunks): |
|
start_time = i * chunk_duration |
|
end_time = min((i + 1) * chunk_duration, duration) |
|
|
|
audio_chunk = audio.subclip(start_time, end_time) |
|
temp_file_path = f"temp_audio_chunk_{i}.wav" |
|
audio_chunk.write_audiofile(temp_file_path, codec='pcm_s16le') |
|
|
|
sound_array = AudioFileClip(temp_file_path).to_soundarray(fps=16000) |
|
if sound_array.ndim > 1: |
|
sound_array = np.mean(sound_array, axis=1) |
|
|
|
input_features = feature_extractor(sound_array, sampling_rate=16000, return_tensors="pt").input_features |
|
input_features = input_features.to(device=device, dtype=torch_dtype) |
|
|
|
with torch.no_grad(): |
|
if target_language: |
|
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language=target_language, |
|
task="transcribe") |
|
generated_ids = model.generate(input_features, max_length=448) |
|
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
full_transcription += transcription + " " |
|
os.remove(temp_file_path) |
|
print(f"Processed chunk {i + 1}/{n_chunks}") |
|
|
|
|
|
sentences = sent_tokenize(full_transcription.strip()) |
|
|
|
|
|
total_chars = sum(len(s) for s in sentences) |
|
sentence_times = [] |
|
current_time = 0 |
|
for sentence in sentences: |
|
sentence_duration = (len(sentence) / total_chars) * duration |
|
sentence_times.append((current_time, current_time + sentence_duration)) |
|
current_time += sentence_duration |
|
|
|
output = "" |
|
if transcribe_to_text: |
|
output += "Text Transcription:\n" + full_transcription + "\n\n" |
|
|
|
if transcribe_to_srt: |
|
output += "SRT Transcription:\n" |
|
for i, (sentence, (start, end)) in enumerate(zip(sentences, sentence_times), 1): |
|
output += f"{i}\n{format_time(start)} --> {format_time(end)}\n{sentence}\n\n" |
|
|
|
return output |
|
|
|
def format_time(seconds): |
|
m, s = divmod(seconds, 60) |
|
h, m = divmod(m, 60) |
|
return f"{int(h):02d}:{int(m):02d}:{s:06.3f}".replace('.', ',') |