|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import numpy as np |
|
from sklearn.preprocessing import MinMaxScaler |
|
|
|
@spaces.GPU(duration=300) |
|
class Autoencoder(nn.Module): |
|
def __init__(self, input_size): |
|
super(Autoencoder, self).__init__() |
|
self.encoder = nn.Sequential( |
|
nn.Linear(input_size, 256), |
|
nn.ReLU(), |
|
nn.Linear(256, 128), |
|
nn.ReLU(), |
|
nn.Linear(128, 64), |
|
nn.ReLU(), |
|
nn.Linear(64, 32) |
|
) |
|
self.decoder = nn.Sequential( |
|
nn.Linear(32, 64), |
|
nn.ReLU(), |
|
nn.Linear(64, 128), |
|
nn.ReLU(), |
|
nn.Linear(128, 256), |
|
nn.ReLU(), |
|
nn.Linear(256, input_size) |
|
) |
|
|
|
def forward(self, x): |
|
batch_size, seq_len, _ = x.size() |
|
x = x.view(batch_size * seq_len, -1) |
|
encoded = self.encoder(x) |
|
decoded = self.decoder(encoded) |
|
return decoded.view(batch_size, seq_len, -1) |
|
|
|
def anomaly_detection(X_embeddings, X_posture, epochs=200, patience=5): |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
scaler_posture = MinMaxScaler() |
|
X_posture_scaled = scaler_posture.fit_transform(X_posture.reshape(-1, 1)) |
|
|
|
|
|
X_embeddings = torch.FloatTensor(X_embeddings).to(device) |
|
if X_embeddings.dim() == 2: |
|
X_embeddings = X_embeddings.unsqueeze(0) |
|
|
|
|
|
X_posture_scaled = torch.FloatTensor(X_posture_scaled).to(device) |
|
if X_posture_scaled.dim() == 2: |
|
X_posture_scaled = X_posture_scaled.unsqueeze(0) |
|
|
|
model_embeddings = Autoencoder(input_size=X_embeddings.shape[2]).to(device) |
|
model_posture = Autoencoder(input_size=X_posture_scaled.shape[2]).to(device) |
|
|
|
criterion = nn.MSELoss() |
|
optimizer_embeddings = optim.Adam(model_embeddings.parameters()) |
|
optimizer_posture = optim.Adam(model_posture.parameters()) |
|
|
|
|
|
for epoch in range(epochs): |
|
for model, optimizer, X in [(model_embeddings, optimizer_embeddings, X_embeddings), |
|
(model_posture, optimizer_posture, X_posture_scaled)]: |
|
model.train() |
|
optimizer.zero_grad() |
|
output = model(X) |
|
loss = criterion(output, X) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
|
|
model_embeddings.eval() |
|
model_posture.eval() |
|
with torch.no_grad(): |
|
reconstructed_embeddings = model_embeddings(X_embeddings).cpu().numpy() |
|
reconstructed_posture = model_posture(X_posture_scaled).cpu().numpy() |
|
|
|
mse_embeddings = np.mean(np.power(X_embeddings.cpu().numpy() - reconstructed_embeddings, 2), axis=2).squeeze() |
|
mse_posture = np.mean(np.power(X_posture_scaled.cpu().numpy() - reconstructed_posture, 2), axis=2).squeeze() |
|
|
|
return mse_embeddings, mse_posture |
|
|
|
def determine_anomalies(mse_values, threshold): |
|
mean = np.mean(mse_values) |
|
std = np.std(mse_values) |
|
anomalies = mse_values > (mean + threshold * std) |
|
return anomalies |